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A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after
Traumatic Brain Injury

Principal Investigator: Pedram Mohseni, Ph.D.

Department of Electrical Engineering and Computer Science, Case Western Reserve University

Co-Principal Investigator: Randolph J. Nudo, Ph.D.

Department of Rehabilitation Medicine, University of Kansas Medical Center

Introduction

The goal of this project was to use an implantable brain-machine-brain interface to enhance behavioral
recovery after traumatic brain injury by reshaping long-range intracortical connectivity patterns. We hypothesized
that activity-dependent stimulation (ADS) of distant cortical locations would aid in functional recovery, and that
recovery would be correlated with enhanced synaptic facilitation between the two areas. We also hypothesized
that spontaneously sprouting axons would migrate toward and terminate in the coupled region, and that such
directed sprouting can support recovery (Figure 1).
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Figure 1. Experimental design to record action potentials from the spared premotor area (RFA) and stimulate the somatosensory
forepaw area (S1) with ADS after a controlled cortical impact in the primary motor cortex (CFA). From Appendix I: Guggenmos et al.,
PNAS, December 2013).

Body

In this section of the final report, we describe the research accomplishments associated with each of the two
research thrusts, namely, Electronics Development / Testing and Microsystem Packaging, for each phase of the
project performance period, as well as describe the research accomplishments associated with the Neurobiology
tasks of the study and collaborative experiments with the team at the University of Kansas Medical Center. The
research tasks are outlined in the approved Statement of Work.

Phase |
1. Electronics Development / Testing

For Tasks 1.1 and 1.2 in Phase I, a fully integrated neural recording front-end comprising a low-noise two-
stage amplification circuitry and a 10-bit successive approximation register-based analog-to-digital converter
(ADC) was designed and fabricated using the AMS 0.35 um 2P/4M CMOS process. The ac-coupled amplification
circuitry provided a maximum mid-band ac gain of ~66 dB at 1 kHz and featured a measured input-referred noise
voltage of ~3.1 uVms from 0.5 Hz to 50 kHz, while dissipating ~27 uW from 1.5 V. Figure 2 depicts the measured
frequency response and input noise voltage of the analog recording front-end for various bandwidth settings. The
ADC featured an effective number of bits (ENOB) of 9.2 for sampling frequency of 35.7 kSa/s, while dissipating
only 6 HW.
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Figure 2. Measured (a) frequency response and (b) input noise voltage of the analog recording front-end with different bandwidth
settings.
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Monolithic circuitry was also designed using standard digital cells to identify the presence of large action
potentials in the recorded digitized data with a spike discrimination algorithm based on two programmable
threshold levels and time-amplitude windows. A first-order digital highpass filter was also designed to remove
any dc/low-frequency artifacts prior to spike discrimination. The measured power consumption per channel was
less than 1 pW with a 1.5 V supply and ADC sampling frequency of 35.7 kSa/s.

For Task 1.3 in Phase I, an infinite impulse response (IIR) temporal filtering technique for real-time stimulus
artifact rejection (SAR) based on template subtraction was developed. A system architecture for the IIR SAR
algorithm was also developed, and the operation of the algorithm with fixed-point computation was analyzed to
obtain the number of bits for the internal nodes of the system, considering dynamic range and fraction length
requirements for optimum performance. Furthermore, memory initialization with the first recorded stimulus
artifact was implemented to significantly decrease the IIR system response time, especially when artifacts were
highly reproducible in consecutive stimulation cycles. The proposed system architecture was hardware-
implemented on a field-programmable gate array (FPGA) and tested using two sets of prerecorded neural data
from a rat and an Aplysia californica (a marine mollusk) obtained from two different laboratories. Measured
results from the FPGA are shown in Figure 3, verifying that the system could indeed remove the stimulus artifacts
from the contaminated neural data in real-time and recover the neural action potentials that occurred on the tail
end of the artifact (as close as within 0.5 ms after the artifact spike). The root-mean-square (rms) value of the pre-
processed stimulus artifact was reduced on average by a factor of 17 (Aplysia californica) and 5.3 (rat) post-
processing. Details of the IR SAR algorithm, its FPGA implementation and testing with prerecorded neural
datasets were reported in Appendix Il (Limnuson, et al., IEEE Trans. Biomed. Circuits and Systems, June 2014).
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Figure 3. FPGA measurement results using the prerecorded Aplysia neural dataset and their corresponding spectrograms.

Next, the SAR algorithm was integrated on a second IC that combined spike recording, electrical
microstimulation, and real-time SAR for bidirectional interfacing with the nervous system. Fabricated using the
AMS 0.35 um 2P/4M CMOS process, the SAR IC integrated a spike-recording front-end with input noise voltage
of 3.42 uVms (0.5 Hz-50 kHz), microstimulating back-end for delivering charge-balanced monophasic or
asymmetric biphasic current pulses up to ~100 uA with passive discharge, and uW-level digital signal processing
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(DSP) unit for real-time SAR based on template subtraction. The 3.1 x 3.1 mm? IC was tested via benchtop and
biological experiments in isolated buccal ganglia of an Aplysia californica.

Figure 4 shows measurement results from the benchtop tests. With the bandwidth of the analog recording
front-end set to 390 Hz—6.4 kHz, the input noise voltage measured in 0.5 Hz—50 kHz was 3.42 uVms, resulting in
noise efficiency factor (NEF) of 2.75. To evaluate the DSP unit power consumption, two prerecorded neural
datasets from a rat (sampled at ~24.41 kHz and obtained during 4 Hz cortical stimulation) and an Aplysia
californica (sampled at 2 kHz and obtained during 0.5 Hz stimulation) were used. The system clock frequency
was set to ~684 kHz and 56 kHz for the rat and Aplysia datasets, respectively. Figure 4 shows the measured DSP
unit power consumption versus requisite memory length, when processing each neural dataset for artifact removal.
The measured power was in the range of 1.6-2.2 uW for the Aplysia neural dataset and increased to 16.1-21.2
MW for the rat neural dataset due to the higher system clock frequency.
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Figure 4. Top — Measured gain (left) and input noise voltage (right) of the analog recording front-end. Bottom — Measured
microstimulator output current vs. output voltage in anodic and cathodic phases (left) and DSP unit power

The SAR IC functionality was subsequently verified in a neurobiological experiment with isolated buccal
ganglia of an Aplysia californica. Custom-made hook electrodes were used for external stimulation in buccal
nerve 2 (BN2) at 2 Hz and recording from buccal nerve 3 (BN3). The stimulus pulsewidth was 1 ms. Gain and
bandwidth of the analog recording front-end were nominally set to maximum value and minimum range,
respectively. The DSP unit was programmed for a low cutoff frequency of 366 Hz in the digital highpass filter,
K factor of 1/16 and blanking duration of 2.5 ms synchronized with the rising edge of the Stimulus Timing signal.
Furthermore, the DSP unit was set to operate for 10 ms in processing each artifact, which closely matched the
stimulus artifact duration (obtained a priori) to save power consumption. Figure 5 depicts measured results from
the neurobiological experiment, demonstrating that the IC was fully capable of removing large stimulus artifacts
in real-time after template subtraction and residual blanking, and recovering the neural spikes that occurred on
the tail end of the artifacts (as close as within ~4 ms of stimulus onset). A statistical analysis of 60 recorded
artifacts revealed an average rms value of 143 pV and 6 pV for the stimulus artifacts pre- and post-SAR
processing, respectively, demonstrating an artifact rejection factor of ~24 by the IC. Details of the IC
implementation and its in vivo testing were published in Appendix Il (Limnuson, et al., J. Analog Integr. Circ.
Sig. Process., February 2015).
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Figure 5. Measured results from neurobiological experimentation. Plot #1 shows a 10 ms window of the input data to the SAR IC,
showing a total of 62 highpass-filtered stimulus artifacts superimposed, with some (barely visible) neural spikes riding on their tail
ends. Plot #2 depicts the 62 stimulus artifact templates generated by the DSP unit and superimposed. Plot #3 shows the SAR IC output
signal without blanking, showing significant rejection.

For Tasks 1.4 and 1.5 in Phase I, a decision-making circuitry was implemented as a programmable gate array
to provide any logic combination of the four spike discriminator outputs (SDO 1~4) as a trigger signal for
stimulation activation using a 16b combination code for each stimulation channel. A high-output-impedance
current microstimulator was also designed and fabricated using the AMS 0.35 um 2P/4M CMOS process. It
delivered a maximum current of 94.5 pA to the target cortical tissue with current efficiency of 95.6% and voltage
compliance of 4.68 V with a 5 V supply, when configured for monophasic stimulation with passive discharge.
The programmable microstimulator could also be configured to deliver charge-balanced asymmetric biphasic
stimulus with programmable time/amplitude parameters. The stimulus current could be programmed via a 6-bit
digital-to-analog converter (DAC) with accuracy better than 1.6 least-significant bit (LSB). Figure 6 shows the
measured microstimulator output current versus the output voltage in the anodic and cathodic phases for four
different values of the DAC input code.
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Figure 6. Measured microstimulator output current vs. output voltage for four different DAC input codes in a) anodic and b) cathodic
phases.
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For Task 1.6 in Phase I, a highly integrated voltage converter was designed and fabricated using the AMS
0.35 um 2P/4M CMOS process to generate a 5 V supply for the stimulating back-end from a miniature primary
battery (1.5 V) that powers the entire system. The voltage converter employed only one external capacitor (1 pF)
for storage, and delivered a maximum dc load current of ~88 pA with power efficiency of 31% with its output
voltage adjusted to 5.05 V. This current drive capability could afford simultaneous stimulation on all eight
channels of the system with current amplitude up to ~100 YA and average stimulus rate >500 Hz, which is
comfortably higher than firing rate of cortical neurons (up to 150 spikes per second). Figure 7 shows the measured
transient output voltage of the converter with an external storage capacitor of 1 pF, while delivering a dc load
current of 10 pA.
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Figure 7. Measured transient output voltage of the 1.5-t0-5 V converter with a 1 yF external storage capacitor when delivering a dc
load current of 10 pA.

For Task 1.7 in Phase I, all electronic circuitry (except for that related to Task 1.3) was fabricated using the
AMS 0.35 pm 2P/4M CMOS process measuring 3.3 x 3.3 mm?. Details of circuit and system architectures along
with more in-depth electrical performance characterization results were reported in [1]. Details of in vivo
measurement results with intact, anesthetized rats for Task 1.1 in Phase Il were also reported in [1].

2. Neurobiology

For Task 2.1 in Phase I, prior to the initiation of animal experiments, we obtained protocol approval for
rodent studies from our local Institutional Animal Care and Use Committee (07/20/10) and subsequently from
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ACURO (10/20/10; USAMRMC Proposal Number PT090167P1).

For Task 2.2 in Phase I, we developed a paradigm for testing neurophysiological changes within pre-motor
cortex (PM) of the rat (RFA, rostral forelimb area) resulting from distant stimulation within several regions of
somatosensory cortex to assess the synaptic efficacy of our activity-dependent stimulation (ADS) paradigm. For
this set of experiments, a commercial neural recording/stimulation system (Tucker-Davis Technologies (TDT),
Alachua, FL) was used for ease and flexibility of programming the various experimental conditions, allowing us
to complete this task in parallel with microdevice development tasks at Case Western Reserve University.
Verification of our ability to record action potentials from single neurons (spikes) and stimulate different cortical
fields was completed using commercial equipment in intact, anesthetized rats. Intracortical microstimulation
(ICMS) was used to determine the functional boundaries of RFA and the caudal forelimb area (CFA). Multi-
unit recording techniques were used to determine sensory fields in S1. A stimulating electrode was implanted
into the RFA. A recording electrode was introduced in CFA as well as control locations. For each recording
electrode location in CFA we were able to discriminate spikes based on the same time-amplitude window
discrimination algorithm to be programmed into the microdevice. We recorded spontaneous firing rates for five
minutes to define baseline rates. Then, spike activity in CFA was recorded during single-pulse stimulation in
RFA for 1000 pulses. This resulted in successful spike discrimination of both spontaneous and stimulus-evoked
activity.

To facilitate this testing, we developed an experimental design wherein one hour periods of stimulation were
interspersed with 10 minute basal periods in which no stimulation was given (Figure 8). For each subject, a 4x4,
16-channel Michigan electrode (NeuroNexus, Ann Arbor, MI) was inserted into layer V of RFA and a 1x16 16-
channel Michigan electrode was inserted into somatosensory cortex. During the first basal period, a “trigger”
neuron was identified within RFA that had a strong signal to noise ratio (based on peak-to-peak spike amplitudes)
and a clear spike profile with an appropriate firing rate, between 5-30Hz.

n
0
Stimulation
n

Figure 8. Experimental paradigm for assessing changes in electrophysiological response related to stimulation. Neural activity was
recorded within RFA and stimulation was delivered into different regions of somatosensory cortex depending on group assignment.

In groups receiving ADS, detection of the “trigger” neuron’s spike profile would lead to a stimulation pulse
within somatosensory cortex after a set-delay. Further, there was a software limiting “blanking” period in which
detected trigger spikes would not induce stimulation to limit the likelihood of forming a runaway positive
feedback loop resulting from detected stimulus artifact at the recording site. This blanking period also allowed
for a period following stimulation that could be compared across all groups. Neural spikes of several ADS
animals were analyzed for mean firing rate distribution of inter-spike intervals. Based on this data, control animals
received random (non-neural activity linked) stimulation (RS), programmed to be triggered randomly, but at
intervals normally distributed around the ADS trigger mean-firing rate (~7Hz). The stimulation had the same
delay and blanking constraints as the ADS group: stimulation would occur after a programmable delay and no
stimulation could occur, even if triggered, during the blanking period.

Based on programmatic limitations of the developed microdevice, namely the timing between threshold
crossing for the initiation of spike detection through the decision logic, delay, and blanking period was required
to be less than 28ms total duration. To test delay periods that were possible within the microdevice circuitry, we
opted to start experimentation with a 10ms spike-stimulus delay, and an 18ms post-stimulus time period. This
time period was within the optimal delay period described by Jackson et al. [2] for inducing changes in motor
output properties within M1 of the macaque using ADS.



We initially acquired data on four groups of rats using the 10ms delay, ADS in S1 forelimb area (FL), N=6,
ADS in S1 barrel field (BF), N=5, random stimulation in FL, N=5, and random stimulation in BF, N=5. All
neural activity was bandpass-filtered between 0.3-5kHz, digitized and stored for off-line analysis. Time stamps
of trigger neurons in all cases were recorded, as well as the time stamps when stimulation was delivered. Time
stamps were also recorded between the basal and stimulation phases of each experiment to allow for filtering
based on these parameters. The filtered data was then processed offline to find neural spike profiles and time
stamps, using either commercial (OpenSorter, TDT) or custom spike detection software. Due to the duration of
the recording sessions, the influence of the stimulation artifact, and the number of channels, significant effort was
devoted to developing automated algorithms for spike detection and sorting for analysis of this data set [3]. Using
data recorded for this task, we were able to improve spike detection accuracy rates from 90.9% using the TDT
commercial spike detection to 97.3% using custom spike detection during the basal periods, and from 93.5% to
97.2% during stimulation phases.

For Task 2.3 in Phase I, we used spike timing data collected in Task 2.2 to perform a number of analyses to
assess changes in the electrophysiological properties of neurons within RFA as a result of ADS. We investigated
these properties in a number of ways. Examining spikes recorded during the blanking period, we first determined
the evoked response to the delivered stimulation. The time stamps of all stimulations were used to generate post-
stimulus time histograms for all periods 28ms after stimulation (corresponding to the blanking period plus delay
of the shortest possible stimulus-stimulus latency; Figure 9).
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Figure 9. Normalized post-stimulus time histograms for ADS (top) and RS (bottom). ADS shows increased probability of spiking within
RFA following stimulation, especially within 10ms of stimulus onset (unpublished).

The first three milliseconds post-stimulus were eliminated due to the presence of stimulus artifact. Stimulus-
associated spikes, calculated as the mean number of spikes per stimulus, were used to allow inter-session
comparison by normalizing for the total number of stimulus pulses delivered across sessions. All spike profiles
recorded were used to calculate the mean spikes per stimulus subdivided into 1ms bins. In the ADS condition, the
data indicated a distinct peak above baseline firing rates within the first 10ms following stimulus onset, and a return
to baseline firing rates by the end of the 28ms. In contrast, there was minimal increase above baseline in the random
stimulation (RS) condition.

To further explore this relationship, we then examined differences in the activity-dependent stimulation-evoked
activity between BF and FL. As shown in Figure 10, it appears that there is a strong effect in the location in which
ADS is delivered, with facilitation of activity when stimulation was applied to BF, and suppression when
stimulation was applied to FL. These data suggest that ADS promotes excitatory connectivity between RFA and
BF, but potentially an inhibitory one between RFA and FL. Because of the spatial arrangement of the Michigan
electrode, it was also possible to assess the evoked activity across a region of RFA. For both conditions, there was
a negative relationship of the probability of ADS evoked activity and the distance from the trigger channel. This
may indicate some degree of specificity in the response with RFA to the stimulation based on the location of the
neuron triggering that stimulation (Figure 11).
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Figure 10. Cumulative ADS evoked spikes of BF and FL relative to the activity of the non-stimulation periods in a subset of n=4 animals
for each group (Van Acker, et al., in preparation).
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Figure 11. Specificity of short latency facilitation in RFA by ADS in S1. Channel 13 was used for triggering ADS, and synaptic
facilitation was greatest on that channel (Van Acker et al., 2015).

In summary, it appears that ADS can induce activity in neurons within RFA immediately after the stimulation,
with a stronger effect the closer the neuron is to the trigger site. While the general trend for ADS was induction of
activity, the area that was stimulated had a dramatic effect on the overall rates of activity while the stimulation was
occurring. In this case, of animals with an intact cerebral cortex, stimulation of the somatosensory barrel fields led
to increased activity related to baseline periods, but stimulation of the forelimb area of somatosensory cortex
decreased the activity relative to baseline. Further, based on the basal firing rates of the four conditions, RFA was
more amenable to alterations in rate and patterns of activity resulting from stimulation of BF (either through ADS
or RS). This information indicates that the location of stimulation has a significant contribution to the activity
recorded in RFA. The ability to manipulate cortico-cortical connections using ADS is dependent on many factors,
including the degree to which reciprocal inhibitory and excitatory connections exist between the recorded and
stimulated areas. When connections are disrupted as a result of CCI injury, communication is fundamentally
altered between cortical regions. It is still unclear what the interplay of existing neural communication has on ADS
functionality. While timing surely plays a factor in effectiveness of ADS, it appears that the choice of recording
and stimulation locations plays a significant factor in successful manipulation of neural activity.

While the initial goal of these experiments was the optimization of spike-stimulus delays, the rapid
potentiation found with ADS, but not open-loop stimulation (OLS), demonstrated that we could examine many
parameters in anesthetized preparations relatively quickly. Functional connectivity was enhanced within hours in
an anesthetized rat after controlled cortical impact. Several other ancillary results have shed insight into the
specificity of these effects, both at the level of the cortical area of interest, as well as the specific set of neurons
used to trigger the stimulation.

Phase |1

1. Electronics Development / Microsystem Packaging

For Tasks 2.1 to 2.4 in Phase Il, a miniature rigid-flex substrate was fabricated through Flexible Circuit
Technologies (Plymouth, MN). The integrated circuit (IC) that was developed in Phase | was assembled on the
4-layer substrate made from FR-4 (rigid) and polyimide (flexible) sections, together with various other
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components. We worked with ProtoConnect (Ann Arbor, MI) for die attachment, encapsulation, wire bonding,
and assembly of all the components onto the substrate. The microsystem was designed to connect to two
chronically implanted recording and stimulating microelectrodes (NeuroNexus Technologies, Ann Arbor, MlI)
via two microconnectors (Omnetics Corp., Minneapolis, MN) in plug-and-play fashion. The microelectrodes were
not permanently connected to the microsystem in order to allow replacing the microsystem in case of failure or
reusing it for additional experiments. The flexible polyimide interconnect between the microelectrode connectors
and the rigid substrate could partially compensate for slight misplacement of the microelectrodes during
implantation, simplifying the surgical procedure for electrode placement. Figure 12 depicts the schematic block
diagram and a photograph of the fully assembled microsystem. Figure 13 verifies the in vivo functionality of the
microsystem in the brain of an ambulatory rat. Specifically, spike waveforms that were discriminated in real-time
from the rostral forelimb area (RFA) region triggered single-pulse stimulation in the second somatosensory area
(SM), leading to the presence of large stimulus artifacts on the recording microelectrode after a user-set spike-
stimulus delay of 5 ms. Details of the microsystem design and assembly/packaging along with measurement
results from both anesthetized and ambulatory rats were reported in Appendix IV (Azin, et al., IEEE Trans.
Biomed. Eng., September 2011).
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Figure 12. Schematic block diagram and a photograph of the fully assembled microsystem for activity-dependent intracortical
microstimulation in an ambulatory rat.
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Figure 13. Stimulation on the microelectrode implanted in the SlI triggered by neural spikes discriminated on the electrode implanted
in the RFA with a spike-stimulus time delay of 5 ms.

We conducted in vivo testing of the microsystem developed at CWRU, and these results were reported in [1].
As soon as the fully assembled microsystem was available from CWRU, in vivo experiments were conducted in
brain-injured rats. We tested our ability to successfully implant the device chronically in an injured rat, record
spikes from implanted electrodes, and stimulate a remote area. We were successful in generating ADS delivered
to the somatosensory cortex with an externally mounted microdevice (Figure 14). In pilot rats, we examined the
effects of the implanted device in ambulatory rats that had sustained a controlled cortical impact in CFA.
Recording electrodes were implanted in RFA, while the stimulating electrode was implanted in the
somatosensory forepaw field. As in uninjured rats, we were able to demonstrate functionality of the microdevice
in an ambulatory rat who had sustained a controlled cortical impact to CFA. The maximum delay for the initial
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microdevice was 28 ms. Thus, it was decided that the initial treatment studies were to be conducted using a 28
ms delay.
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Figure 14. Ambulatory rat with microdevice in place. Rat is reaching for a food pellet through a slot in a Plexiglas barrier. Normal
rats achieve approximately 80% successful retrievals during an assessment session. In rats with a controlled cortical impact to CFA,
motor performance is poor and rats rarely achieve more than 20% success at the task.

For Task 1.2 in Phase 11, in vivo experiments were performed in a total of 16 rats that had received controlled
cortical impact (CClI) over the forelimb area of the primary motor cortex to simulate a TBI (Tasks 3.1-3.11 in
Neurobiology, below). ADS was generated continuously for 28 days by the fully assembled microsystem powered
with a 1.5 V battery. As seen in Figure 15, within one week post-injury, while receiving ADS, rats showed
substantially improved reaching and grasping functions as compared to control rats (injured but no microsystem)
and open-loop stimulation (OLS) rats. These functions were indistinguishable from pre-lesion levels (dotted line)
by two weeks post-injury. These findings showing rapid recovery of motor abilities in rats implanted with the
microsystem were published in the journal Proceedings of the National Academy of Sciences (PNAS, see
Appendix Il, Guggenmos, et al., December 2013). During the ensuing weeks, the study attracted considerable
attention from various news agencies and technology leaders in the microelectronics field, and was featured on
the CDMRP’s own website.
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Figure 15. Performance of rats on a skilled reaching task after injury to primary motor cortex. ADS group is shown in red, OLS group
in blue, and control group in black.

3. Neurobiology

Tasks 3.1 — 3.11 (Phase I1) represented the core experiment of the project to test the ability of ADS between
RFA and S1 to improve motor recovery after a controlled cortical impact injury to motor cortex. The behavioral
results of this study were summarized above under Electronics Development/Microsystem Packaging. The
individual tasks (3.1-3.11) represent various steps in the protocol describing injury induction, baseline testing,
microelectrode implantation, randomization of rats to ADS and OLS and control groups, assessment of behavioral
and physiological outcomes, explantation of microelectrodes, and euthanasia.

Male Long-Evans rats were randomly assigned to one of two groups: ADS, random, OLS or no stimulation
(Unimplanted Control). Each animal was put into a Plexiglas reaching chamber and a single banana-flavored food
pellet was placed into a shallow food well on an external shelf. The opening of the chamber was such that only
the left forelimb could be used for reaching. Prior to entry into the remainder of the study, the animal was required
to reach and retrieve food pellets above 70% success for three conse cutive days. Probe trials occurred on Post-
Lesion Days (PLD) 3, 5, 8, 14, 21 and 28 and consisted of 20 trials with microdevice stimulation on and 20 trials
with microdevice stimulation off.




Under anesthesia, a midline incision was made to expose the skull surface, then a 5-mm trephine hole was
made over the right hemisphere using stereotaxic coordinates to expose the CFA RFA, and the forepaw area of
S1 in the right hemisphere using stereotaxic coordinates. The RFA and S1 areas were then isolated using
electrophysiological mapping techniques. After defining RFA and S1, a controlled cortical impact was delivered
to CFA using the Impact One stereotaxic impactor (Leica Microsystems). The impact was delivered via a flat,
circular tip with a 3-mm diameter, using parameters outlined in our published study [4]. A 16-channel Michigan
electrode (NeuroNexus Technologies) was inserted into RFA and another electrode was inserted into S1. Any
remaining exposed areas were covered with the silicone polymer before suturing the incision.

The microdevice was then affixed to a threaded rod with stainless steel nuts and spacers, and its connectors
plugged into the appropriate electrodes. Two to four hours following the microdevice implantation, a 1.55-V
battery was inserted into the microdevice. An Omnetics connector leading to a custom-built controller board was
plugged into the microdevice, and the microdevice was initially programmed to record on all four available
channels. Once spike discrimination parameters were defined, they were imported into the microdevice
programming software. Stimulation parameters were also set in the software to a 60-pA current delivered pseudo-
biphasically with pulse duration of 192 pus. For the ADS group, stimulation was set to occur 28 ms following
spike discrimination on the channel from which the parameters were derived. The microdevice was then
programmed to transmit the data wirelessly, and the animal was allowed to move freely about its cage during the
28 day recovery period.

The results demonstrated a potent effect of ADS on motor performance after only 5 days of operation. By
Day 14 post-lesion, performance in the ADS group was indistinguishable from pre-lesion performance (~75%;
Figure 15). These results demonstrate that ADS between the spared premotor cortex (i.e., the RFA) and the
somatosensory forepaw area (S1) can result in a rapid improvement in motor function in the first week post-
lesion. This is the first demonstration that ADS can be used to positively affect function after cortical injury. Our
neurophysiological results also showed that ADS resulted in strong, short-latency facilitation of the corticocortical
pathway between S1 and RFA (Appendix 11, Guggenmos, et al., December 2013).

Phase 111
1. Electronics Development

For Tasks 1.1 and 1.2 in Phase 111, considerations of differences in non-human primate to rodent anatomy
and physiology were needed to identify parameter ranges necessary for the non-human primate microdevice. In
rodents, evoked motor responses can be elicited from the premotor region using stimulation pulses with current
levels varying from 1 pA to 80 YA, which was used, in part, as the rationale for having <100 pA of stimulus
intensity in the rodent IC. In non-human primates, evoked motor responses in the premotor regions can be elicited
using much lower current levels, up to 30 PA in the squirrel monkey [5]. In this case, the rodent IC had more than
enough headroom to stimulate non-human primate motor circuits. Furthermore, in the rodent IC, the range of
spike-stimulus time delay was chosen based on the estimated transmission time (assuming a minimum of 2.9 m/s
transmission propagation speed of layer VV motor neurons [6], 1 or 2 synapse transmission (2 ms to 3 ms per
synapse) and a corticocortical transmission distance of 5 mm), leading to a physiologically relevant delay between
premotor region activity and sensory cortex stimulation. While the distance between premotor regions and area
3a/3b of the sensory cortex in the squirrel monkey is significantly larger than that in the rodent at ~1.2 cm, the
conduction velocity is likely significantly faster. Hence, the time delay range (< 29 ms) of the rodent IC was
sufficient for physiologically relevant time delays in the squirrel monkey. As the primary adjustable parameters
for ADS in the rodent IC were sufficient or superior for use in the non-human primate, the rodent IC was used in
subsequent development of the primate microdevice.

2. Microsystem Packaging

For Tasks 2.1 and 2.2 in Phase 111, efforts were focused on modifying the microsystem assembly and
packaging for ambulatory experiments with non-human primates. Specifically, the goal was to fit the revised
microsystem inside a custom-designed plastic chamber with dimensions of ~ 2.4 x 2.4 x 1.8 cm?® that would be
mounted to the skull of a squirrel monkey with stainless steel skull screws and affixed with dental acrylic. Power
was delivered to the head-mounted microsystem from a backpack device enclosed in a casing with dimensions of
~ 6 x 3.5 x 2 cm® and embedded within a primate jacket. The backpack device incorporated a lithium-thionyl-
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chloride battery (3.6 V) with a capacity of 1,600 mAh, electronic components for power management, a
microcontroller unit (MCU), and an ANT radio module (ANT Wireless, Alberta, Canada). Since the primate
microsystem had to be enclosed within the skull-mounted chamber during the behavioral studies, and the squirrel
monkeys would be freely moving in their home cages, the microsystem could not be tethered to equipment for
programming/monitoring, even on a temporary basis. The low-power, small-sized, 2.4 GHz ANT radio module
would instead establish a stable, bidirectional, wireless link between the microsystem and a home-base computer
for programming the head-mounted microsystem and monitoring its operation status (e.g., battery voltage,
stimulus site impedance, and average stimulus rate). Efforts were then focused, and are still continuing, on
firmware design to develop codes for the two microcontrollers on the microsystem and an external receiver board
to allow bidirectional communication between the microsystem and the home-base computer via the ANT radio
module.

Figure 16 shows the system architectures for the head-mounted and backpack devices placed within the skull
chamber and primate jacket, respectively. To increase battery lifetime (estimated to be ~60 days), the backpack
device employed a commercial dc-dc converter and low-dropout (LDO) regulator to generate the power supply
for the ANT radio module (2.1 V) and MCU (1.8 V). The head-mounted device also included a commercial, low-
power, low-voltage MCU that programmed the IC during power-up and then would go into a halt mode to reduce
the static power consumption. Three LDO regulators would generate the power supply for the MCU (1.8 V),
analog (1.5 V), and digital (1.5 V) circuitry of the IC in the head-mounted device. The head-mounted and
backpack devices could communicate via a biocompatible, flexible, 4-conductor wire (ground, 2.1 V, DATA_TX,
DATA_RX), shielded in a flexible, biocompatible, spiral conduit and tunneled subcutaneously.
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Figure 16. Architecture of head-mounted and backpack devices for primate microsystem.

3. Neurobiology

For Task 3.1 and 3.2 (Phase I11), we sectioned the tissue and calculated the lesion volumes for the efficacy
study described above. Task 3.3, 3.4 and 3.5 focused on anatomical changes using histological stains to identify
tract-tracers. Tract-tracing in unimplanted CCI (and uninjured healthy) rats was straight-forward. We did
extensive analysis of the control cases, and we were able to reconstruct in tangential sections the anatomical
connectivity patterns of the RFA with other cortical areas (Figure 17). A full manuscript was submitted to
Cerebral Cortex, and is currently under revision. We encountered a problem in the histological processing of
implanted animals that is attributable to the presence of the electrode arrays and their removal prior to tracer
injection. Analysis of rats with CCI injuries, but no ADS treatment, will be completed using internal KUMC
endowment funding. However, it is possible that axonal growth and connectivity will not occur over this short
time period. Such long-range rewiring is likely to require several weeks to a few months. The rapid recovery we
observed during the efficacy study described above suggests that the microdevice serves as a functional
communication bridge between the cortical areas, at least within the first few weeks of operation. Nevertheless,
we are continuing with the study of corticocortical connections after injury to determine natural sprouting patterns
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and rates of connectivity. Task 3.6, conducting the regulatory review and approval of the protocol for non-human
primates was completed. Full approval by the local IACUC and by ACURO was completed. In addition, an on-
site inspection of the non-human primate facilities was conducted by a DoD veterinarian, and was approved.

Figure 17. Spatial distribution of labeled synaptic boutons following injection of the neuronal tract-tracer, biotinylated dextran amine,
into RFA in a healthy, uninjured rat. A single 50 micron thick, tangential section in the middle layers of cortex is shown (Urban et al.,
under revision).

Phase 1V
1. Electronics Testing/Microsystem Packaging

For Task 1.1 in Phase 1V, Figure 18 shows an illustration of the skull-mounted plastic chamber enclosing
the non-human primate microsystem. With internal dimensions of 18 x 18 mm?, the chamber that molded to the
skull curvature and spanned the cranial opening was designed to surround the fixed electrode connectors. This
chamber would serve both to protect the opening and electrodes, and to secure the microsystem. The chamber
was mounted to the skull within the border of embedded skull screws and affixed with dental acrylic. The
microsystem power leads routed through a hole in the chamber and subcutaneously tunneled to the mid-scapular
region of the back and into a previously installed primate jacket. These leads could be connected to a large-
capacity battery pack held within the jacket. Inside the chamber, the primate microsystem was designed to connect
to two multi-site, chronically implanted recording and stimulating microelectrodes (NeuroNexus Technologies,
Ann Arbor, MI) via two microconnectors (Omnetics Corp., Minneapolis, MN) in plug-and-play fashion, and was
then screwed into place on mounting posts inside the chamber walls. After the power leads were attached to the
microsystem, the chamber lid was screwed into place, securing all embedded microelectronic circuitry. As stated
above, efforts were focused, and are still continuing, on developing software tools and firmware codes to allow
bidirectional wireless communication between the fully enclosed microsystem and the home-base computer for
programming and operation monitoring. Follow-on support from the Joint Warfighter Medical Research Program
(JWMRP, award log# JW150028) will allow ADS testing with this microsystem in the non-human primate model.
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Figure 18. Illustration of skull-mounted plastic chamber enclosing non-human primate microsystem.

2. Neurobiology

Tasks 2.1-2.10 (Phase 1) comprised the various steps in the protocol for the non-human primate study. The
full efficacy study was postponed due to two issues: 1) The non-human primate microdevice will need to undergo
additional revisions in the structural design in order to be attached to the monkey’s head. 2) Since controlled
cortical impact studies in non-human primates are unprecedented, the local IACUC required that we first conduct
a pilot study to verify the lesion parameters and to understand the course of recovery after injury. This study has
now been completed in three squirrel monkeys, and we have characterized the time course of the behavioral
deficits on two different forelimb tasks: 1) a pellet retrieval task and 2) a grip force control task. For the impact
procedure, under sterile surgical conditions, the dura was incised and retracted to perform motor mapping
exploration of M1 using intracortical microstimulation procedures. This allowed precise identification of the M1
hand area. A commercial impactor designed for CCI studies was used with the following parameters: Impact tip
diameter: 5 mm (slightly larger than the area of the M1 hand representation); Depth below surface: 3mm; impact
velocity: 4 m/s; impact duration: 200 msec. The dura was replaced, the impact tip was positioned over the center
of the M1 forelimb area, and the injury created.

Following the injury, each of the monkeys recovered from the procedure well, with no untoward side effects
except for the expected paresis of the affected forelimb. Comparison of photographs of the impacted area before,
and 15 weeks after the impact injury shows substantial distortion of the cortical tissue (Figure 19). Blood vessels
outside of the impact area are intact 15 wks later, but tissue in the center of the impact is shrunken, due to necrosis
of injured cortical tissue, and subsequent cavitation. The areas intended for microelectrode implantation are still

| closed-loop intervention in primates.
F BE =

'0 ", LB q

Pre-Injury 15 wks Post-Injury

Figure 19. Photograph of cortical surface prior to, and 15 weeks after a CCI injury in motor cortex of a squirrel monkey. Black
lines in left image indicate mm calibration marks. The blue circle indicates the location of the impact tip over the M1 forelimb
representation.

Figure 20 shows a monkey displaying initial deficits in both the grip task and the pellet retrieval task. It is
important to note that except in a subset of days on the pellet retrieval task, the monkey made attempts, despite
the poor performance. This indicates that our lesion size is appropriate, in that we can track performance over
time, but the monkeys are not so impaired that they will not attempt the task, or have trouble eating. By 13 weeks
post-injury, this monkey had completely recovered the ability to grip and hold with a range of force from 100-
300 grams for 3 seconds. Note also that the scores on the pellet retrieval task were consistently worse after the
injury, throughout the 13 weeks. While flexions per retrieval were approximately 2 before the injury, the daily
averages ranged from 4 to 14 after the injury, and variability remained much higher.
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Figure 20. Natural behavioral recovery after CCI injury in the primary motor cortex hand representation in a representative squirrel
monkey. A. Number of successful grips (100-300 gram grip held for 3 seconds) before and weekly post-injury for 13 weeks. B.
Behavioral performance on a pellet-retrieval task requiring skilled use of the digits. Lower numbers indicate better performance.

Histological confirmation of the lesion revealed focal necrosis in the target region of the motor cortex
corresponding to the impact location (Figure 21). In each of the three monkeys, the underlying cortical tissue
displayed localized necrosis. As shown in the figure, while intact, the cortical tissue showed substantial shrinkage
and loss of myelin substance due to degeneration of local neurons. Nissl stains (not shown) revealed severe to
complete loss of neurons. Where neurons were still present, typical cortical lamination patterns were severely
disrupted. While the underlying white matter was intact, distortion of the most superficial aspects of the corona
radiate was evident. In the full study, impact parameters will be altered slightly (somewhat larger impact tip,
slightly deeper penetration) in order to produce a more substantial and longer lasting behavioral deficit in
untreated monkeys. This will provide a more robust and sensitive model for testing the effects of the proposed
ADS intervention.

impact

Figure 21. Weil-Myelin stain revealing myelinated axons in post-mortem tissue from squirrel monkey after CCl injury. Note the necrotic
tissue at the location of the impact, as evidenced by dimpling of surface, loss of myelin, thinning of cortex, and distortion of underlying
fibers in corona radiata (unpublished).

These data provide convincing evidence that we can successfully and reliably perform a CCl injury in the M1
hand area of a non-human primate, the squirrel monkey. As few such studies have ever been done in non-human
primates, the paper generated from this study, now in preparation, should attract broad attention. The study
suggests that we can create a CCI injury that spares the regions of interest for the closed-loop neuromodulation
approach, like we performed in rats. The ventral premotor cortex and the somatosensory hand area are still intact
after the injury, and there are chronic deficits that can potentially be overcome through the use of the closed-loop
technology approach.

Key Research Accomplishments

e Developed the smallest, most lightweight system to date for use with an ambulatory rat
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Demonstrated ADS in an ambulatory rat

Demonstrated rapid recovery of motor performance in rats with TBI undergoing ADS

Developed optimal design strategies for a fully enclosed, skull-mounted, non-human primate microsystem
Developed a neural signal-processing algorithm for real-time stimulus artifact rejection (SAR)
Implemented the algorithm in hardware on FPGA and IC platforms for real-time operation

Demonstrated full functionality of the SAR IC via neurobiological experiments with an Aplysia californica
Demonstrated rapid synaptic facilitation using ADS in anesthetized rats

Demonstrated synaptic facilitation between target cortical areas that correlates with the recovery of motor
skills

Performed anatomical studies in healthy rats using tract-tracers to compare with CCI rats undergoing ADS
Performed first CCI study in motor cortex of non-human primates and tracked behavioral recovery

Reportable Outcomes

1- Manuscripts/Abstracts/Presentations:

2- Patents and Licenses Applied for/lssued:

R. J. Nudo, P. Mohseni, D. Guggenmos, and M. Azin, Methods and Associated Neural Prosthetic Devices for
Bridging Brain Areas to Improve Function, U.S. Patent No. 9,008,780 Awarded on April 14, 2015

R. J. Nudo, P. Mohseni, D. Guggenmos, and M. Azin, Methods and Associated Neural Prosthetic Devices for
Bridging Brain Areas to Improve Function, U.S. Non-Provisional (Continuation) Application No. 14/630,375 Filed
on February 24, 2015

R. J. Nudo, P. Mohseni, D. Guggenmos, and M. Azin, Methods and Associated Neural Prosthetic Devices for
Bridging Brain Areas to Improve Function, International Application No. PCT/US2012/42381 Filed on June 14, 2012

3- Degrees Obtained from Award:

PhD (Kanokwan Limnuson), May 2015
PhD (David Guggenmos), May 2013
PhD (Meysam Azin), May 2011

4- Development of Cell Lines and Tissue/Serum Repositories: Not applicable.

5- Infomatics (Databases and Animal Models): None.

6- Funding Applied for:

A Closed-Loop Neural Prosthesis for Restoration of Function after Traumatic Brain Injury; US Army Medical
Research and Materiel Command; Pls Mohseni and Nudo; $1,654,379; 20162019 (Funded).

A Closed-Loop Neuroprosthetic Microdevice for Restoration of Function after Spinal Cord Injury; US Army
Medical Research and Materiel Command; Pl Nudo/Co-lI Mohseni/Co-1 Tolosa; $597,270; 2016-2019
(Recommended for Funding as an Alternate, but ultimately not funded).

Advanced Neuroprosthetics for Functional Restoration after Acquired Brain Injuries; Kansas Board of Regents;
P1 Nudo/Co-I Guggenmaos; $125,000; 2015-2016 (Funded)

7- Employment/Research Opportunities Applied for/Received:

Kanokwan Limnuson,PhD Post-Doctoral Research Fellow, Feinstein Institute for Medical Research, Manhasset, NY
Meysam Azin,PhD Staff Engineer, QualComm, San Diego, CA

David Guggenmos, Ph.D., post-doctoral fellow, Duke University; research assistant professor, University of Kansas
Medical Center, 2015-present.

8- Personnel Receiving Pay from Award:
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Pedram Mohseni, Mehran Bakhshiani, Meysam Azin, Nok Limnuson, Randolph J. Nudo, Harry Scott Barbay,
David J. Guggenmos, Heather Hudson, Maxwell Murphy, Gustaf Van Acker

Conclusion

Rapid progress was made toward developing smart prosthetic platforms for altering plasticity in the
injured brain, leading to future therapeutic interventions for TBI that are guided by the underlying mechanisms
for long-range functional and structural plasticity in the cerebral cortex. An unprecedented, potent effect of ADS
on motor performance has been demonstrated in rats with TBI. Statistical analysis of the data is complete and
includes both un-implanted and open-loop stimulation control groups. Post-hoc physiological data demonstrated
rapid establishment of functional connectivity between the two areas. Efforts were also focused on developing a
revised microsystem that would enable the investigation of the safety and efficacy of this approach in a non-
human primate model of TBI, leading to the development of optimal design and partitioning strategies for a fully
enclosed, skull-mounted microsystem with a long operation lifetime. In parallel, we also established the feasibility
of IC implementation of a neural signal-processing algorithm for real-time elimination of stimulus artifacts that
can potentially increase the amount of conditioning performed by the ADS microsystem between the two cortical
regions.
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Neural interface systems are becoming increasingly more feasible
for brain repair strategies. This paper tests the hypothesis that
recovery after brain injury can be facilitated by a neural prosthesis
serving as a communication link between distant locations in the
cerebral cortex. The primary motor area in the cerebral cortex was
injured in a rat model of focal brain injury, disrupting communi-
cation between motor and somatosensory areas and resulting in
impaired reaching and grasping abilities. After implantation of
microelectrodes in cerebral cortex, a neural prosthesis discrimi-
nated action potentials (spikes) in premotor cortex that triggered
electrical stimulation in somatosensory cortex continuously over
subsequent weeks. Within 1 wk, while receiving spike-triggered
stimulation, rats showed substantially improved reaching and grasp-
ing functions that were indistinguishable from prelesion levels by 2
wk. Post hoc analysis of the spikes evoked by the stimulation pro-
vides compelling evidence that the neural prosthesis enhanced
functional connectivity between the two target areas. This proof-
of-concept study demonstrates that neural interface systems can be
used effectively to bridge damaged neural pathways functionally and
promote recovery after brain injury.

brain-machine-brain interface | neural plasticity | traumatic brain injury |
closed-loop | long-term potentiation

he view of the brain as a collection of independent ana-

tomical modules, each with discrete functions, is currently
undergoing radical change. New evidence from neurophysio-
logical and neuroanatomical experiments in animals, as well as
neuroimaging studies in humans, now suggests that normal brain
function can be best appreciated in the context of the complex
arrangements of functional and structural interconnections among
brain areas. Although mechanistic details are still under refine-
ment, synchronous discharge of neurons in widespread areas of the
cerebral cortex appears to be an emergent property of neuronal
networks that functionally couple remote locations (1). It is now
recognized that not only are discrete regions of the brain damaged
in injury or disease but, perhaps more importantly, the intercon-
nections among uninjured areas are disrupted, potentially leading
to many of the functional impairments that persist after brain injury
(2). Likewise, plasticity of brain interconnections may partially
underlie recovery of function after injury (3).

Technological efforts to restore brain function after injury
have focused primarily on modulating the excitability of focal
regions in uninjured parts of the brain (4). Purportedly, in-
creasing the excitability of neurons involved in adaptive plasticity
expands the neural substrate potentially involved in functional
recovery. However, no methods are yet available to alter the func-
tional connectivity between spared brain regions directly, with the
intent to restore normal communication patterns. The present paper
tests the hypothesis that an artificial communication link between
uninjured regions of the cerebral cortex can restore function in a
rodent model of traumatic brain injury (TBI). Development of such
neuroprosthetic approaches to brain repair may have important
implications for the millions of individuals who are left with
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permanent motor and cognitive impairments after acquired brain
injury, as occurs in stroke and trauma.

For the present experiment, we used a rodent model of focal
brain injury to the caudal forelimb area (CFA), a region that is
part of the cortical sensorimotor system. This area in the frontal
cortex shares many properties with primary motor cortex (M1) of
primates; injury to M1 results in long-term impairment in reaching
and grasping functions (5). Traditionally, it has been thought that
impairment occurs because M1 provides substantial outputs to the
motor apparatus in the spinal cord, thus directly affecting motor
output function. However, M1 also has important interconnec-
tions with the primary somatosensory cortex (S1) located in the
parietal lobe (Fig. 14). Long-range corticocortical fibers from S1
provide critical information to M1 about the position of the limb in
space. Thus, injury to M1 results in impaired motor performance
due, at least in part, to disruption in communication between the
somatosensory and motor cortex (6).

To test our hypothesis that functional recovery can be facili-
tated by creating an artificial communication link between
spared somatosensory and motor regions of the brain, we fo-
cused on the rat’s premotor cortex (PM). The rostral forelimb
area (RFA) is a premotor area in the rodent’s frontal cortex that
shares many properties with PM of primates and is thought to
participate in recovery of function after injury to M1 (5, 7-9).
PM areas are so-named because the principal target of their
output fibers is M1 (10). PM areas also have long-range corti-
cocortical connections with somatosensory areas, but at least in
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Fig. 1. Theoretical model of neuroprosthetic treatment approach after

brain injury. (A) Normal connectivity of M1, S1, and PM. Both M1 (CFA in rat)
and PM (RFA in rat) send substantial outputs to the spinal cord via the
corticospinal tract. Also, extensive reciprocal connections exist between M1
and PM, as well as between M1 and S1. (B) Effects of focal M1 injury on brain
connectivity and the hypothetical effect of a BMBI to restore somatosensory-
motor communication. An injury to M1, as might occur in stroke or brain
trauma, results in a focal area of necrosis, as well as loss of M1 outputs to the
spinal cord. Corticocortical communication between M1 and S1 (and be-
tween M1 and PM) is also disrupted, further contributing to functional im-
pairment. Because the uninjured PM also contains corticospinal neurons, it
might have the ability to serve in a vicarious role. The dotted line indicates
enhanced functional connection between PM and S1 that we propose is
established after treatment with a BMBI. (C) Location of target areas in rat
cerebral cortex. A topographic map of the somatosensory representation in
S1 is superimposed on the cortex.

intact animals, they appear to be relatively weak compared with
M1’s connections with the somatosensory cortex (9, 11, 12).

Our approach was to link the neural activity of the PM fore-
limb area (RFA) functionally with activation of the S1 forelimb
area following a controlled cortical impact (CCI) to M1 (Fig. 1 B
and C). To this end, a microdevice was developed with the ability
to deliver activity-dependent stimulation (ADS) through recording
and digitizing extracellular neural activity from an implanted mi-
croelectrode, discriminating individual action potentials (spikes),
and delivering small amounts of electrical current to another mi-
croelectrode implanted in a distant population of neurons (13, 14).
This closed-loop system was similar, in principle, to the “Neuro-
chip” used previously by other investigators to demonstrate the
effects of local ADS in intact animals (15), but it was miniaturized
for head-mounted, wireless operation (Fig. 24 and Fig. S1). By
linking the activity of one area of the cortex with that of a distant
area of the cortex, a closed-loop brain—machine-brain interface
(BMBI) for artificial corticocortical communication between PM
and S1 was created.

Individual spikes were detected in PM, and subsequent stim-
ulation was delivered to S1 after a 7.5-ms delay (Fig. 2B). (Be-
cause connections between distant cortical areas are commonly
reciprocal, enhanced communication theoretically could be estab-
lished by ADS in either direction.) After the M1 injury, rats were
implanted with microelectrodes connected to the BMBI micro-
device (Fig. 24). The microdevice delivered ADS 24 h per day up
to 28 d postinjury, except for brief motor assessment sessions on
predetermined days. Behavioral recovery in ADS rats was com-
pared with recovery in rats with open-loop stimulation (OLS), in
which S1 stimulation was uncorrelated with spikes in PM, and with
control rats that had no microdevice implanted.

Results

Testing Motor Skill After Brain Injury. The primary behavioral assay
for determining whether ADS resulted in functional improvement
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after brain injury was a skilled reaching task. This widely used task
is a particularly sensitive measure of forelimb motor function after
M1 lesions in both rodents and primates. Rats were pretrained to
achieve a minimum criterion score of >70% successful pellet
retrievals. After the lesion was created, rats were tested on the
task during assessment sessions on postlesion days 3, 5, 8, 14, 21,
and 28. During each postlesion assessment session, rats were
tested under two conditions: first with the microdevice stimulation
function turned OFF and then with the stimulation function
turned ON. Rats in each of the three groups demonstrated a se-
vere deficit on the skilled reaching task in the first few days after
the injury (Fig. 3). On postlesion days 3 and 5, there were no
significant differences in motor performance between the groups
(global comparisons: P = 0.5265 and P = 0.0945, respectively).
Rats in the control group (with a lesion but no microdevice)
continued to demonstrate a profound deficit that plateaued at
only about 25% successful retrievals. In striking contrast, by
postlesion day 8, group performance was significantly different
(global comparison: P = 0.0044). Rats in the ADS group showed
a substantial and statistically significant behavioral improvement
in reaching success compared with rats in the other groups in the
ON condition (pairwise comparisons: P = 0.0418 for ADS vs.
OLS, P = 0.0012 for ADS vs. control, and P = 0.2110 for OLS vs.
control; Fig. 3 and Movies S1 and S2). By postlesion day 14, the
performance of the rats in the ADS group was approximately at
prelesion levels and significantly higher than that of rats in the
other groups. The difference between the OLS group and the
control group approached significance on day 14 (global compari-
son: P = 0.0004; pairwise comparisons: P = 0.0284 for ADS vs. OLS,
P < 0.0001 for ADS vs. control, and P = 0.0555 for OLS vs. control).
By postlesion day 21, performance in the ADS group remained high
and statistically different from that of the control group. Perfor-
mance was not significantly different in the ADS group between
days 14 and 21 (P = 0.576). However, by day 21, the OLS group
had improved further, so that the difference between the two
groups was not significant (global comparison: P = 0.0007;
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Fig. 2. ADS protocol. After injury to the CFA, a recording microelectrode
was placed in the RFA, whereas a stimulating microelectrode was placed in
the distal forelimb field of S1. A BMBI discriminated action potentials in the
RFA, and after a 7.5-ms delay, it delivered a low-level electrical current pulse
to S1(13). (A) Sketch of a rat retrieving a food pellet with a BMBI attached to
the skull. (B) Sample traces of recordings from the RFA showing action
potentials and stimulus artifacts from an ICMS current delivered to S1. Time-
amplitude window discriminators are indicated by red boxes. A total of 100
superimposed traces are shown.
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Fig. 3. Performance of rats on a skilled reaching task after injury to M1 (ON
condition). The ADS group is shown in red, the OLS group is shown in blue,
and the control group is shown in black. The dotted line indicates the av-
erage prelesion performance of all animals in the study. The bounded area
indicates the 95% confidence interval. Regression lines are based on an LMM
(43). Error bars represent 95% confidence intervals. *P < 0.05 (pairwise dif-
ference between the ADS and OLS groups). Because the statistical analysis was
an intent-to-treat model, rats were included in the analysis even if the
microdevice was no longer functional. Only one rat in the ADS group had
a microdevice that was functional by postlesion day 28; thus, figures are
presented through postlesion day 21 (S/ Results). Diamonds, squares, and tri-
angles represent individual animal data points. #, microdevice not functional
(Tables S1 and S2).

pairwise comparisons: P = 0.0891 for ADS vs. OLS, P = 0.0002
for ADS vs. control, and P = 0.0278 for OLS vs. control). Al-
though the mean performance of the ADS group was higher than
that of the OLS group even in the OFF condition, differences
were not statistically significant on any postlesion day (Fig. S2).

Immediate Effects Within Single Sessions. Rats in the ADS group
often showed substantially improved performance within a single
day’s session when the microdevice was switched from the OFF
to the ON condition. One particularly salient example can be
seen in a video of a rat in the ADS group on postlesion day 8
(Movie S2). In the OFF condition, this rat made many attempts
to reach through the opening in the Plexiglas but was rarely able
to do so accurately. Large trajectory errors were made, and
relatively few retrievals were completed successfully. Following
completion of trials in the OFF condition, the microdevice was
programmed to the ON state, a process that required 2-3 min.
As soon as the microdevice was turned ON, the rat began to
retrieve pellets with noticeably enhanced success. Movements
tended to be slower and seemingly more deliberate, and fewer
errors were made. A statistical analysis of the ADS group be-
tween the OFF and ON conditions revealed significantly better
performance in the ON condition on postlesion day 3 (P =
0.0003), postlesion day 5 (P = 0.0005), and postlesion day 8 (P =
0.0019) and marginally better performance on postlesion day 14
(P = 0.0666). The same analysis for the OLS group revealed
significantly worse performance in the ON condition on post-
lesion day 3 (P = 0.0471) and marginally worse performance on
postlesion day 5 (P = 0.0554) and postlesion day 8 (P = 0.0781)
(Fig. S3). These effects tended to dissipate over time, so that no
differences were detected between OFF and ON conditions in
either group by postlesion day 21. These within-day differences
through postlesion day 8 suggest that the timing of the S1 stimulus
pulse is critical. Behavioral performance was significantly better
when the S1 stimulus pulse was delivered contingent upon an
action potential in the RFA (i.e., in the ADS group).

Effects of ADS on Functional Connectivity. To explore possible
neurophysiological mechanisms underlying the behavioral effects
of the ADS treatment on postinjury motor performance, we per-
formed post hoc analysis of spike events in the RFA that were
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discriminated in the 28 ms after each S1 stimulus pulse. This time
window represented our imposed blanking period during which
additional S1 stimulus pulses could not occur. Poststimulus spike
histograms were compared with 28-ms periods chosen from data
acquired in the OFF condition 7.5 ms after each RFA spike event.
The results show that substantially more spikes in the RFA oc-
curred following S1 stimulation in the ADS group, with peak ac-
tivity occurring ~4-6 ms after the S1 stimulus pulse (Fig. 44).
Spike rates were nearly threefold higher averaged across the 28-ms
period compared with a comparable period in the OFF condition.
Spike rates in the OLS group were slightly lower than in the ADS
group in the OFF condition but were significantly lower than in
the ADS group in the ON condition. These data suggest that ADS
substantially reinforced network interactions between S1 and the
RFA, whereas OLS did not.

Subdividing the spike histograms by day reveals that enhanced
spike activity in the ADS ON condition is evident even on the
first day that the microdevice was activated (Fig. 4B and Fig. S4).
There is also a trend toward further increases in spike discharge
between the first (days 1 and 5) and second (days 8 and 14)
weeks in the ADS group, corresponding to the time period when
behavioral performance approached normal levels.

Whether behavioral performance and enhanced functional
connectivity persist following the end of treatment cannot be
addressed fully based on the current results (SI Discussion).
However, it is noteworthy that there was a significant decrease in
mean performance in the ADS group between postinjury days 21
and 28 (Fig. S5). During this time period, microelectrode-micro-
device connection failures prevented normal operation of the
microdevice in most of the ADS rats. This phenomenon of re-
duced behavioral performance after deactivation provides further
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Fig. 4. Comparison of spike activity in the RFA in the ADS and OLS groups.
Data represent spikes discriminated in the RFA over a 28-ms period. In the
ON condition, the trigger for the data acquisition was the S1 stimulus pulse.
In the OFF condition, the trigger for the data acquisition was 7.5 ms after
a spike event in the RFA. (A) Composite posttrigger spiking histograms de-
rived from neural recordings in the RFA compiled from days 1, 5, 8, 14, and
21 (+1 d). Histograms portray the mean spike counts per trigger event within
each time bin (also Fig. S4). Spike counts were based on an average of over
22,000 trigger events per animal per day. Poststimulus firing rates were
substantially higher in the ADS ON condition (33.1 Hz), compared with the
ADS OFF (12.5 Hz), OLS ON (6.6 Hz), or OLS OFF (10.1 Hz) condition. (B)
Average spike firing rates throughout the 28-ms window for each day. Error
bars represent between-subject variation on each day (plus 1 SD). LMMs
detected higher firing rates in the ADS group compared with the OLS group
with stimulation ON (P < 0.0001). Firing rates did not differ statistically be-
tween groups in the OFF condition (P > 0.05). Posttrigger spiking histograms
for each day are shown in Fig. S4.
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support for the notion that the behavioral improvements were
mediated by closed-loop operation. It also suggests that either
a longer duration of operation (i.e., beyond 21 d) is required for
persistent effects or that closed-loop stimulation enhances the
rate, but not the extent, of recovery compared with OLS. None-
theless, the present data provide persuasive evidence that targeted
closed-loop stimulation approaches are feasible as brain repair
strategies. Rapid behavioral recovery parallels the development
of increased functional connectivity between spared somato-
sensory and motor regions of the cortex.

Discussion

This proof-of-concept study indicates that a closed-loop neuro-
prosthetic microdevice can enhance functional connectivity be-
tween distant cortical locations and generate rapid improvement
in motor function after cortical injury, at least in rats with M1
damage. A closed-loop device with similar functionality induced
neurophysiological changes when applied over a short distance
within M1 of intact monkeys (15). More recently, spike-triggered
stimulation was used to demonstrate increased potentiation be-
tween neurons in the sensorimotor cortex of rats. The spike-
stimulation delay was important, because 5 ms resulted in robust
increases, whereas 100 or 500 ms resulted in no potentiation (16).
The present study demonstrates that the extension of the ADS
approach to injured brains has demonstrable effects on recovery
and establishes functional communication that is qualitatively
different compared with uncorrelated stimulation. The current
implementation of the system architecture, using a lightweight,
battery-powered, wireless, miniaturized microdevice for spike-
triggered intracortical microstimulation (ICMS), represents an
important step in the process of developing implantable BMBIs
for neural repair in clinical populations.

Differential Mechanisms Underlying the Effects of OLS and ADS on
Behavioral Recovery. The mechanisms underlying the therapeutic
effects of OLS and ADS after injury in the present model of TBI
are still somewhat speculative. In the 1940s, Donald Hebb (17)
postulated that “When one cell repeatedly assists in firing another,
the axon of the first cell develops synaptic knobs. . . in contact with
the soma of the second cell.” This hypothesis has morphed into the
modern maxim “Cells that fire together, wire together,” a phrase
made popular by neuroscientist, Carla Shatz (18). A large literature
has grown from these initial hypotheses, and a neurophysiological
phenomenon widely known as “Hebbian plasticity” has formed the
basis for many neuroscientific models of learning and memory.
Previous studies in intact primates and rodents using ADS or
paired-pulse stimulation show the ability for such coactivation
to alter output properties of cortical neurons (15, 16, 19). Pre-
sumably, the stimulation causes Hebbian-like plasticity to alter
existing connectivity within a cortical area.

Although significant behavioral recovery occurred in both the
ADS and OLS groups compared with control rats, the ADS
group improved substantially more rapidly. Also, in the early
postlesion period, the ADS group demonstrated a qualitatively
different ON vs. OFF performance compared with the OLS group.
These behavioral results alone suggest that different mechanisms
underlie recovery in ADS and OLS groups. Although the results of
ICMS on behavioral outcomes in animal models of brain injury
have not been reported previously, several studies have examined
the therapeutic effects of surface stimulation in either human
stroke survivors or animal stroke models. For example, an invasive
technology using epidural stimulation to provide low-level current
pulses over uninjured cortical areas during the execution of re-
habilitative training resulted in behavioral improvement in rodent
and nonhuman primate models of cortical ischemic injury (20, 21).
Although initial results in clinical stroke populations were prom-
ising, the therapeutic effect of open-loop epidural stimulation was
not demonstrated in a randomized clinical trial (22). Nonetheless,
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noninvasive cortical stimulation approaches (transcranial magnetic
stimulation and transcranial direct-current stimulation) continue to
attract substantial interest due to positive results in small groups of
stroke survivors (23).

Evidence to support specific mechanisms underlying the effects
of open-loop electrical stimulation of the cortex on recovery is
largely correlative but includes motor map reorganization, in-
creased dendritic length and spine density, cell proliferation and
cell migration in the subventricular zone, receptor subunit expres-
sion, activation of antiapoptotic cascades, increased neurotrophic
factors, enhanced angiogenesis, and proliferation of inflammatory
cells (20, 21, 24-28). Because the number of stimulus pulses was
similar in the ADS and OLS groups in the present study, it is rea-
sonable to conclude that if electrical stimulation promoted pro-
liferative processes, the effects were the same in the two groups.

In addition, various OLS protocols produce alterations in
synaptic efficacy. These data are particularly relevant because of
the qualitative differences in functional connectivity observed
between ADS and OLS groups. Long-term potentiation (LTP),
an experimental phenomenon first discovered in the hippocam-
pus of anesthetized rabbits over 40 y ago (29), is expressed in
both excitatory and inhibitory synapses throughout the mam-
malian brain (30). Although many experimental protocols have
been developed to optimize synaptic potentiation in various
model systems, the sign and magnitude of synaptic potentiation
are heavily dependent upon the frequency and pattern of stim-
ulation (31, 32).

Despite comparable mean stimulation frequency between the
two groups, the temporal structure of stimulus pulses differed
between the ADS and OLS groups. Interstimulus intervals span-
ned approximately the same range, but the intrinsic temporal firing
pattern observed in the ADS group resulted in a greater number of
short interstimulus intervals (Fig. S64). Thus, ADS stimulation
occasionally consisted of stimulus pulses at higher frequency,
somewhat analogous to theta-burst stimulation, in which train
bursts of high-frequency pulses (e.g., four to eight pulses at 100
300 Hz) are delivered at about 6-7 Hz (i.e., within the theta-
rhythm frequency). Theta-burst stimulation is often used to opti-
mize generation of LTP, especially in the neocortex of awake
animals, where LTP has traditionally been more difficult to gen-
erate (33). In a study in the neocortex of freely moving rats, theta-
burst stimulation, using parameters similar to those used in the
hippocampus, evoked LTP, but the effects required at least 5 d to
develop and plateaued at about 15 d (34). In the present study,
although enhanced, short-latency spike discharge was evident with
ADS even on the first day of stimulation, the time course of the
behavioral effects was remarkably similar to the slowly developing
LTP found in the rat neocortex study.

Theta-burst timing protocols vary considerably depending upon
the particular model system. However, a recent study in a mouse
brain slice preparation in the dorsal striatum suggests that the
optimal theta-burst patterns are those that best match intrinsic
neural activity patterns (35). Further, “burstiness” was critical to
inducing LTP. Simply reducing the interburst pause from 35 ms to
20 ms eliminated the induction of LTP. It is possible that our
imposed 28-ms blanking period further contributed to the neu-
rophysiological and behavioral effects. We propose that by using
a closed-loop stimulation paradigm, the intrinsic stimulation pat-
terns that optimally drive synaptic potentiation in the cortico-
cortical pathways were used. (The feasibility of using optimal
theta-burst parameters in an open-loop mode of stimulation is
discussed in SI Discussion).

In summary, OLS and ADS may both contribute to behavioral
recovery but by somewhat different mechanisms. Electrical stim-
ulation, in general, is likely to modulate neuronal growth pro-
cesses, leading to adaptive plasticity that could account for at least
part of the behavioral improvement. In the closed-loop (ADS)
condition, however, the intrinsic firing pattern drives synaptic
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potentiation in a manner similar to that observed in theta-burst
protocols. Although potentiation builds rapidly (within 1 d), we
propose that chronic ADS results in a behaviorally relevant, func-
tional connection between S1 and PM.

Future Applications of Closed-Loop Neuroprostheses for Treating
Neurological Disorders. A closed-loop neuroprosthesis applying
ADS across distant cortical areas is a vastly different approach to
brain repair than has been achieved to date. Therapeutic closed-
loop stimulation in the brain is still uncommon. However, analo-
gous approaches are already being tested for epilepsy, and an
expanded role for closed-loop systems for deep brain stimulation
in Parkinson disease is now being considered (36, 37). Further,
closed-loop approaches are under development in animal models
of spinal cord injury (38, 39). Other investigators have proposed
a closed-loop approach for a cognitive prosthesis that has shown
promise in animal models (40). Other potential clinical applica-
tions based on the current model include stroke, focal TBI, and
surgical resections. Finally, a variety of neurological syndromes
that are thought to be related to disruption of cortical communi-
cation may be amenable to ADS. In the 1960s, Norman Geschwind
identified several disorders collectively called “disconnection syn-
dromes,” revolutionizing the field of behavioral neurology (41).
The consideration of closed-loop approaches to repair of cortical
disconnection syndromes may open treatment options for a variety
of conditions in which neural communication is disrupted, whether
due to disease, injury, or idiopathic causes.

Materials and Methods

Animals. Adult, male Long-Evans hooded rats (n = 16, weight: 350-450 g;
Harlan) were procured at 4 mo of age. Protocols for animal use were
approved by the Kansas University Medical Center Institutional Animal
Care and Use Committee and adhered to the Guide for the Care and Use
of Laboratory Animals (42). Each rat was singly housed in a transparent
cage and provided with food and water ad libitum. The room was kept
on a 12-h:12-h light/dark cycle, and ambient temperature was maintained
at 22 °C.

Rats were assigned to three groups: the ADS group, the OLS group, and the
control group. Rats in all three groups received a CCl injury over the M1
forelimb area (5). Postmortem histological analysis confirmed that lesion size
was comparable across groups (S/ Results). The surgical procedures (e.g., burr
holes, skull screws, dura resection) were identical in all three groups. Mi-
croelectrode implantation and microdevice attachment were identical in the
ADS and OLS groups. In both the ADS and OLS groups, one single-shank
microelectrode array was inserted into the S1 forelimb area. A second single-
shank microelectrode array was inserted into the RFA (depths are provided
in SI Materials and Methods). In the ADS group, stimulation in S1 was con-
tingent upon spike activity in the RFA; that is, time-amplitude window dis-
criminators determined when action potentials were recorded from the RFA
microelectrode. Discrimination of an individual action potential triggered
delivery of a brief pulse of electrical current to the microelectrode implanted
in S1. In the OLS group, the stimulation was delivered arbitrarily at a frequency
approximately the same as that in the ADS group but with the timing of
stimulation uncorrelated with the discriminated action potentials (S/ Materials
and Methods). The wireless, battery-powered microdevice, mounted to the
freely moving rat’s skull, operated 24 h per day (Fig. 2A and Fig. S1).

CCl Procedure. In each rat, the skull over the CFA was removed while leaving
the dura intact. A 3-mm diameter rod with a flat tip was placed into a com-
mercial impactor device (Leica Microsystems), centered over the target location
(SI Materials and Methods), and then lowered until the surface of the tip was
in contact with the dura, as indicated by an audible signal triggered by
a feedback sensor. The rod was then retracted and armed. An impact was
delivered with an excursion of 2 mm below the surface of the dura. This
protocol leads to reproducible lesions that damage all cortical layers within the
CFA with minimal superficial damage to underlying white matter tracts and
limited or no damage to adjacent cortical areas (5).

Microdevice Programming. ADS programming. To determine discrimination
parameters for ADS, the channel with the best signal-to-noise ratio was
chosen. This same channel was later used during microdevice operation to
determine spike events that triggered stimulation. Using a custom MATLAB
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(MathWorks) script, action potentials were discriminated offline by thresholding
and two user-adjustable time-amplitude windows, with the intent of maximizing
discrimination of observed spikes while minimizing noise and/or stimulus arti-
facts. Stimulation parameters were set to deliver a 60-pA, 192-us, pseudobiphasic
current pulse with a 7.5-ms delay following spike discrimination (Fig. 2B). A
blanking interval following each spike discrimination prevented additional
stimulus pulses for 28 ms. The spike discrimination, timing, and stimulation
parameters were then uploaded to the microdevice for online spike dis-
crimination. Thus, during device operation in the ADS group, each dis-
criminated spike in PM triggered a stimulation pulse in S1, constrained by
the blanking interval.

The 7.5-ms delay was based on previous studies of the effective delay within

local networks, analysis of spike-stimulus delays in pilot data, as well as con-
straints in the current microdevice architecture. The 28-ms blanking interval was
also based on analysis of spike-stimulus delays in pilot data and was set to
reduce the possibility of producing a positive-feedback loop, in which S1
stimulation might drive action potentials in PM, retriggering stimulation of S1.
OLS programming. Stimulation parameters were the same in the OLS group as
for the ADS group. However, the stimulation was not contingent upon
recorded neural activity. Instead, the stimulation was set to occur arbitrarily
with interstimulus intervals ranging from 35 to 200 ms (randomized equally
across the range), closely approximating the stimulus rate for the ADS group
(SI Materials and Methods, SI Results, and Fig. S6A).
Signal monitoring and maintenance. The neural activity and stimulation rates
were monitored daily throughout the study via a wireless connection.
The microdevice ran continuously, delivering ADS or OLS 24 h a day during
the experiment, except for brief periods required for behavioral as-
sessment, changing the battery, and adjusting the window discriminator
parameters.

Bandpass-filtered neural data (~500 Hz to 5 kHz) were recorded at ~35.7
kHz per channel from either one or four channels (wireless or wired con-
nection, respectively) during all signal monitoring and behavioral trials using
LabVIEW software (National Instruments). In addition, all animals had mul-
tiple sessions during which data were recorded during home cage behavior. The
raw signal recording duration of any single monitoring period was software-
limited to ~45 min, but the stimulus trigger signal could be recorded for up to 24
h. The neural signal data were converted from a LabVIEW file to a text file and
analyzed using custom MATLAB software.

Behavioral Training and Assessment. Skilled reaching task. Each rat was tested in
a 30-cm x 30-cm x 52-cm Plexiglas reaching chamber. For each trial, a single
food pellet (45 mg; Bioserv) was placed into a shallow well 2 cm from the front
wall on an external shelf positioned 3 cm from the bottom of the chamber.
The rat was required to reach through a narrow slot to retrieve the pellet with
its forepaw (Fig. 2A). After forelimb preference was determined, a removable
Plexiglas wall was used to force the animal to use only the preferred forelimb
(5). Trials were recorded with a digital camcorder for playback and analysis.
The percentage of success was measured as the percentage of trials in which
the rat grasped, retrieved, and brought the pellet to the mouth (60 trials per
day). Before entry into the remainder of the study, the rat was required to
reach and retrieve food pellets above 70% success for 3 consecutive days.
Following the injury (see below), behavioral probing sessions were conducted
on postlesion days 3, 5, 8, 14, 21, and 28. Testing on postlesion days 1 and 2
was not practical due to the effects of surgical recovery and postsurgical
analgesics on behavioral performance. Probing sessions consisted of 20 trials
with the microdevice stimulation function turned OFF and then 20 trials with
the microdevice stimulation function turned ON.

Foot-fault task. Rats were also assessed on a foot-fault task to determine the
effects of the injury on a locomotion task. In general, although there was an
effect of the injury on this task on postlesion day 3, no lesion effects were
observed on subsequent days. Also, there were no differences between
groups at any time points. This result was not unexpected, because the foot-
fault task is less sensitive, and spontaneous recovery is common with lesions
restricted to the forelimb motor cortex.

Statistical Analysis of Behavioral Performance. Initially, animals were ran-
domly assigned to an ADS (n = 6) or control (n = 5) group. A subsequent OLS
group (n = 5) was studied after group randomization. This was necessary to
use neurophysiological data from the ADS group to determine the stimu-
lation protocol for the OLS group.

Linear mixed models (LMMs) (43) were generated via restricted maximum
likelihood estimation using SAS version 9.2 PROC GLIMMIX (SAS Institute,
Inc.) to model performance on the skilled reaching task for each animal over
time. Results are presented to mirror a series of one-way ANOVA models
because the LMM provides analogous results. For animals in the ADS and
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OLS groups, the difference between the OFF and ON conditions was studied
as an outcome. Models included fixed effects for treatment group, time, and
their interaction.

Time was treated as a continuous measure to generate estimates of
a polynomial relationship for recovery profiles in each treatment group over
time up to a (treatment group-specific) quadratic relationship. Animal-spe-
cific effects were introduced by allowing for random intercepts in these
models; thus, the models allowed for estimation of normally distributed error
terms both for between- and within-animal effects. Backward elimination
was used to determine the functional form of these relationships with F test
P values <0.05 for effects to remain in the models. All lower ordered terms
were retained in models in the presence of higher level interaction effects,
regardless of statistical significance. Models were evaluated by visual in-
spection of observed vs. predicted values for each animal to assess model fit,
observed vs. residuals plots to assess constant variance assumptions, and
histograms of the residuals and quantile-quantile plots to assess the as-
sumption of normally distributed random effects. Residuals included both
those for the random intercept coefficients (for between-animal error
terms) and overall residuals (for within-animal error terms).
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Linear contrasts of model estimates were used to test for treatment
group differences on postlesion days 3, 5, 8, 14, 21, and 28 using F tests,
with day 28 serving as the a priori time point of interest for the com-
parison of ADS vs. OLS. Other pairwise comparisons at each time point
were also tested (S/ Materials and Methods, Protocol Deviations). Given
the single, a priori primary comparison, no further adjustments for multiple
comparisons were made. Linear contrasts were used to generate 95% confi-
dence intervals for each treatment group for those specific days and, within
the ADS and OLS groups, to test for differences in the OFF vs. ON conditions.
Two-sided P values were used for presentation of results.
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Abstract—This paper presents an infinite impulse response (IIR)
temporal filtering technique for real-time stimulus artifact rejec-
tion (SAR) based on template subtraction. A system architecture
for the IIR SAR algorithm is developed, and the operation of the
algorithm with fixed-point computation is analyzed to obtain the
number of bits for the internal nodes of the system, considering dy-
namic range and fraction length requirements for optimum perfor-
mance. Further, memory initialization with the first recorded stim-
ulus artifact is proposed and shown to significantly decrease the
IIR system response time, especially when artifacts are highly re-
producible in consecutive stimulation cycles. The proposed system
architecture is hardware-implemented on a field-programmable
gate array (FPGA) and tested using two sets of prerecorded neural
data from a rat and an Aplysia californica (a marine sea slug) ob-
tained from two different laboratories. The measured results from
the FPGA verify that the system can indeed remove the stimulus
artifacts from the contaminated neural data in real time and re-
cover the neural action potentials that occur on the tail end of
the artifact (as close as within 0.5 ms after the artifact spike). The
root-mean-square (rms) value of the pre-processed stimulus arti-
fact is reduced on average by a factor of 17 (Aplysia californica)
and 5.3 (rat) post-processing.

Index  Terms—Closed-loop  neuroprostheses, field-pro-
grammable gate array (FPGA), neural recording, neurostim-
ulation, stimulus artifact rejection, template subtraction.

I. INTRODUCTION

TIMULUS ARTIFACT REJECTION (SAR) is important
S in biopotential recording, whenever stimulation is per-
formed in the same medium in which the recording electrodes
are also placed [1]. This is because the large stimulus arti-
facts can corrupt or mask the neural activity of interest, either
hindering the analysis of stimulus-evoked recorded data [1],
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or limiting the efficacy of activity-dependent stimulation for
closed-loop operation [2], [3]. Many SAR techniques have been
developed in the past that use the same fundamental principles
for rejection, and the choice of a particular method is typically
dependent on the type of biopotential that is being recorded
and the conditions under which the recording is taking place
[4]-[7].

The two primary classes of SAR techniques are the so-called
blanking and subtraction techniques. There are also some other
techniques that do not readily fit into one of these two categories
[8], [9]. Blanking techniques essentially disconnect the input
of the recording amplifier during stimulation. Stimulation-syn-
chronized blanking can be achieved by several methods, in-
cluding grounding the amplifier input [10], [11], connecting the
amplifier input to its output or to that of a sample-and-hold
circuit [12], [13], digitally replacing the contaminated signal
during the artifact interval with an estimate of the uncontami-
nated signal [14], and using high-speed auto-zeroing to maintain
the amplifier output constant during stimulation [15]. In general,
blanking techniques are relatively simple, effective for rejecting
large stimulus artifacts, practical for preventing amplifier satu-
ration, and inherently amenable to hardware implementation for
real-time SAR. The major drawback is that recording is not vi-
able during stimulation.

Subtraction techniques basically subtract a template signal
representative of the stimulus artifacts from the contaminated
neural data to remove the artifacts. These techniques do not
prevent amplifier saturation on their own and often necessitate
running a digital signal processing (DSP) algorithm, rendering
them much more complex than the blanking techniques. The
major advantage is that these techniques make it possible to re-
tain signal information during stimulation.

Generating an accurate template signal has been the main
focus of research in subtraction-based SAR techniques and can
be achieved by several methods, including artifact modeling
based on locally fitted cubic polynomials [5], capturing the ar-
tifact from subthreshold stimulation or from a second recording
site remote from the stimulation site [1], and temporal aver-
aging of the contaminated data for multiple consecutive stim-
ulation cycles [16], [17], with the underlying assumption that
the overall shape, dynamic range, and timing (e.g., latency with
respect to the stimulus timing signal) of the stimulus artifacts do
not significantly vary with time.

Subtraction techniques have the potential to fully eliminate
the artifacts from the contaminated data record, but have to rely
on the generation of an accurate template signal for subtraction,
which in turn necessitates an adjustment in the recording ampli-
fier gain or stimulus intensity to enable non-saturated recording
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of the full-scale stimulus artifact. On the other hand, providing
a low-impedance discharge path for the stimulation electrode
using active feedback circuitry [18], [19], as well as careful de-
sign of the stimulator in terms of isolation of stimulation chan-
nels and parasitic current injection [20] have been previously
shown to decrease the duration and amplitude of otherwise-satu-
rating stimulus artifacts. But these approaches cannot fully elim-
inate the artifacts on their own, suggesting that an optimal solu-
tion might be to combine them with the subtraction techniques.

Since subtraction techniques typically require a DSP algo-
rithm for the generation of the template signal, they have tra-
ditionally been implemented offline on a home-base computer
post-data acquisition. To execute a subtraction-based SAR algo-
rithm in real time (i.e., as the recording is taking place), a suit-
able template-generation technique should be selected and op-
timized, realized in hardware, and tested with real neural data,
paving the way for ultimately implementing it on a custom in-
tegrated circuit (IC).

We have previously assessed the feasibility of hardware im-
plementation of a subtraction-based SAR algorithm using the
well-established finite impulse response (FIR) and infinite im-
pulse response (IIR) temporal filtering techniques for template
generation [21]. Using MATLAB™ simulations, both imple-
mentations were shown to be capable of removing stimulus ar-
tifacts upon reaching steady-state, with the IIR architecture of-
fering a more favorable tradeoff among performance, computa-
tional resources, and power consumption at the expense of its
operation speed.

This paper presents our work on hardware implementation
of the IIR system proposed in [21] for a real-time SAR algo-
rithm based on template subtraction. The paper is organized as
follows. Section II describes the SAR algorithm and the cor-
responding IIR system architecture, and Section III analyzes
its dynamic range and fraction length requirements to deter-
mine the number of bits for the internal nodes of the system
in fixed-point computation. Section IV describes the implemen-
tation of the IIR SAR algorithm on a field-programmable gate
array (FPGA), and Section V presents the measured FPGA re-
sults using two prerecorded neural datasets. Finally, Section VI
draws some conclusions from this work.

II. SAR ALGORITHM

To generate a template signal representative of the stimulus
artifact, temporal filtering is employed in which several properly
shifted versions of the input neural data containing the stimulus
artifacts are averaged. This is represented by [21]

N-1

S aln) -t~ nT)

n=0

y(t) = (1)

where y(t) is the estimated template signal, 2:(¢) is the input
neural data containing the stimulus artifacts, /V is the number of
stimulus artifact waveforms used for template estimation, a(n)
are averaging factors that should sum up to unity for the stimulus
artifact and y(t) to have the same amplitude (e.g., a(n) factors
can be all equal to 1/N for standard averaging), and T.;; is
the stimulation period. It should be noted that the stimulation
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Fig. 1. System architecture for the IIR implementation of the template
subtraction-based SAR algorithm. The number of bits in internal operation of
the algorithm is also shown.

occurrence does not necessarily have to be periodic for correct
operation of the SAR algorithm, as long as it is predictable via
a stimulus timing signal.

An FIR implementation of (1) was previously shown to re-
quire at least N — 1 memory rows and N summations in each
period of the sampling clock, whereas the IIR implementation
would require a single memory row and only three summations
at the expense of much longer system response time [21]. Ini-
tializing the memory with the first recorded artifact can signif-
icantly decrease the IIR system response time for creating an
accurate artifact template signal [22]. Therefore, this paper fo-
cuses on the IIR implementation of the SAR algorithm with
memory initialization.

Fig. 1 depicts the system architecture, comprising
neural-recording front-end circuitry for signal conditioning and
a DSP unit for executing the SAR algorithm. The recording
front-end provides ac amplification, dc input stabilization,
bandpass filtering, and 10b digitization of the recorded neural
signal with fully programmable gain and bandwidth, similar to
what has previously been shown in [3]. The DSP unit, which
is the focus of this paper, provides additional highpass filtering
using an IIR digital filter with adjustable bandwidth to remove
any residual dc offsets or low-frequency noise, and performs
real-time stimulus artifact rejection using template subtraction.
Based on Fig. 1:

Z/n:(lfK)'ynfl"‘K'fL'n ()
where y,, is the new artifact template signal, 4,,_1 is the pre-
vious template signal, and x,, is the input neural data. Therefore,
in the IIR implementation, the stimulus artifact template signal
is retained in the memory, and a new template signal is gener-
ated from the previous template signal and the input neural data
according to (2), which is then subtracted from the input neural
data. The factor K (<1) plays a similar role to N in (1), af-
fecting the IIR system response time and accuracy. As shown
in the Appendix, it can be derived from (2) that the minimum
number of stimulus artifacts, 7, required to generate an accu-
rate template signal with error less than, e.g., 0.1% is

-3 - 10%10 |l — Ygl
log(1 — K)

m >

)

where Y} is the initial condition of the memory normalized to
the steady-state artifact template signal. Fig. 2;shows aplotofm
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Fig. 2. Minimum number of stimulus artifacts required to generate an accurate
template signal with error <0.1% as a function of the normalized initial
condition of the memory (Y, < 1) for four different values of K.

versus Yy for four different values of K. Clearly, the closer the
initial condition is to the steady-state template signal, the faster
the system response time, showing that the IIR implementation
is particularly effective when stimulus artifacts in consecutive
stimulation cycles are reproducible. In this work, the factor K
is selected to be either 1/16 or 1/32, which also allows imple-
menting the multiplication-by- K function via a shift to the right
by 4b or 5b, respectively, obviating the need for digital multi-
pliers.

It is worth noting that the artifact template generation tech-
nique in (2) performed by the proposed IIR system is in essence
an exponentially weighted moving average (EWMA) [23],
a statistic tool with a rich history in process monitoring and
quality control charting [24], [25] as well as economics [26]
and industrial quality control [27]. In this paper, we utilize a
real-time implementation of the EWMA for a novel application
in neural signal processing. Section III discusses the perfor-
mance of the IIR SAR algorithm with fixed-point computation
and provides a framework for determining the optimum number
of bits in internal operation of the algorithm.

III. SAR ALGORITHM WITH FIXED-POINT COMPUTATION

When template calculations are performed with floating-
point precision, similar to when the SAR algorithm is executed
offline in MATLAB™ on a home-base computer post-data
acquisition, the output can be very accurate. However, for
real-time execution of the algorithm in hardware, fixed-point
computation is preferred for simplicity, which then raises con-
cerns about the template signal accuracy due to quantization
noise. In this section, we find the optimum number of bits
in internal operation of the SAR algorithm by analyzing the
dynamic range and fraction length requirements.

In TIR systems, the internal nodes of the structure can po-
tentially overflow, necessitating an adjustment in their dynamic
range to satisfy the L1-norm criteria for preventing an over-
flow [28]-[30]. In Fig. 1, consider the signal path from the input
neural data (i.e., ) to each of the four internal nodes of the al-
gorithm (i.e., nodes #1—4). Assume the resulting transfer func-
tions and corresponding impulse responses are F;(z) and f;[n],

K=1/16

L1-norm ~ 0.0625

(i
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Fig. 3. Ll-norm estimates at nodes #1-4 for the two selected values of /.

respectively. Modeling the memory block as a unit delay, it can
be shown that

Fi(z) =K

Be) = T T

RG) = e

i) = 1{%1_—[2;;1' @

Fig. 3 depicts the L1-norm estimates of the four transfer func-
tions for the two selected values of X, where L1-norm is

oC

1Al =>" £l )

n=0

As can be seen in all cases, the L1-norm estimates are less
than one, indicating that no additional bits (equal to log, || 1)
are needed beyond 10b for the internal nodes to avoid overflow.
The SAR algorithm output node (2, = %, — y,) has higher
dynamic range of 11b to prevent the saturation of the output
after subtraction, in case of an overflow/underflow.

Next, to assess the impact of quantization noise induced by
fixed-point computation on template signal accuracy, we deter-
mine the signal-to-noise ratio (SNR) in template signal gener-
ation as a function of the fraction length for the internal nodes
(i.e., number of additional bits beyond 10b in a word-length).
Fig. 4 shows the simulation structure for comparing the per-
formance of the SAR algorithm with fixed-point computation
versus that with floating-point computation by determining the
SNR [31]. @1 and ()2 are two quantizers that quantize their in-
puts to the word-length value, whereas (J3 quantizes its input to
10b. Fig. 5 depicts the simulated SNR and effective numbes of
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Fig. 5. Simulated SNR and ENOB of template signal generation in the IIR
SAR algorithm with fixed-point computation versus the fraction length for the
two selected values of K.

bits, ENOB, in template signal generation for the two selected
values of K, where the SNR is defined as

Sout,rms

]\TQ,rms

SNR = 20log;, (6)

with S,y and N representing the reference output and quan-
tization noise, respectively. Input z,, is taken to be a 10b-digi-
tized sinusoidal signal with rail-to-rail amplitude (i.e., —512 to
511 in two’s complement format) and a frequency of 0.1 mHz
to capture the underlying assumption that the stimulus artifacts
do not change rapidly with time. Assuming a stimulation fre-
quency of 1 Hz, z,,’s sampling frequency is also 1 Hz. Clearly,
the system requires a fraction length of 5b to achieve ~10b ac-
curacy in template signal generation with K = 1/32. A lower
fraction length would increase the quantization noise and de-
grade the accuracy to < 10h, whereas a higher fraction length not
only would increase the requisite hardware resources to support
larger memory size, but also would not offer any significant ben-
efit given that by design the overall system performance would
be limited by that of the neural-recording front-end [3], and not
the DSP unit. Taking into account these considerations related
to dynamic range and fraction length requirements, the selected
number of bits for the internal operation of the SAR algorithm
is shown in Fig. 1.

IV. FPGA IMPLEMENTATION

The DSP unit in Fig. 1, comprising the digital highpass filter
(HPF) and the SAR algorithm circuitry, has been implemented
on an FPGA using the DE2 Development and Educational
Board, which has the Cyclone II device by Altera as its FPGA
platform. Fig. 6 depicts the architecture of the DSP unit in
FPGA implementation, which incorporates a 68b parameter
register, a digital control unit, and a DSP core. The param-
eter register is used to store the user-selectable parameters
for system operation such as the bandwidth setting of the
digital HPF and factor K in the SAR algorithm, as well as
memory initialization, memory length, and output-blanking
settings. The memory length (i.e., number of 16b samples) is
determined by the sampling clock frequency and the stimulus
artifact duration. If needed, the blanking feature is used after
template subtraction to remove any residual artifacts in the
output around the rising and falling edges of the artifact where
it rapidly changes with time [21]. The parameter register is
implemented as a standalone circuit block with its own timing
and control operation, which is separate from that of the other
circuit blocks and applied externally. This is because this block
is loaded with the requisite system parameters only once prior
to the experiment and is not synchronously clocked with the
rest of the circuit during SAR algorithm operation.

The digital control unit incorporates counters and finite-state
machines and provides timing, path, and blanking control sig-
nals for the DSP core. The required inputs for the digital control
unit include a stimulus timing signal, system clock and sampling
clock signals, and system parameters such as memory length,
memory initialization, and blanking settings.

The DSP core incorporates a digital HPF, circuitry to exe-
cute the SAR algorithm, and parallel-to-serial converters at the
output. The required inputs for the DSP core include the am-
plified/digitized neural signal (10b), system clock signal, and
control signals provided by the digital control unit. Fig. 6 also
shows the structure of the digital HPF and SAR algorithm cir-
cuitry in the DSP core as implemented on the FPGA. The ampli-
fied/digitized input neural signal is first highpass filtered using
a Ist-order, IIR filter with direct form II architecture. Factor K
is the user-selected HPF coefficient that controls the filter band-
width and is selected judiciously to perform the filtering using
arithmetic shifts, subtraction and addition only, with no need
for digital multipliers or dividers [3]. The user can set K; to
be either 1/16 or 1/8, which results in a filter cutoff frequency
of 366 Hz or 756 Hz, respectively, from a 1-MHz system clock.
Since the digitized data at the analog-to-digital converter (ADC)
output are unsigned numbers (10b), a factor of 512 is subtracted
from the input signal to convert it to two’s complement format
for further processing. In addition, an overflow/underflow de-
tector is used at the HPF output to limit its dynamic range to
10b before feeding it to the SAR algorithm circuitry.

The SAR algorithm only operates for the duration of each
stimulus artifact. The digitized/filtered sample at the output of
the HPF filter (10b) is first converted to 15b via a shift to the
left by 5b and then multiplied by factor Ky (same as K in
Fig. 1) stored in the parameter register. Next, the memory data
containing the previous template signal are read; multiplied by
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Fig. 6. Architecture of the DSP unit (top) and structure of the digital HPF and SAR algorithm circuitry in the DSP core (bottom) as implemented on the FPGA.

(1 — K3), and added to (K5 - ,,) to obtain the new template
signal (15b), which is written back into the memory for the
next cycle. The new template signal is also converted back to
10b and subsequently subtracted from the 10b digitized/filtered
input sample to produce the SAR algorithm output signal. Out-
side the duration of the stimulus artifact, the SAR algorithm cir-
cuitry is disabled and the digitized/filtered sample at the HPF
output is directly passed to the output register.

The path control signal from the digital control unit manages
the memory initialization. Specifically, if the recorded stimulus
artifact is the first artifact, indicated as such by the stimulus
timing signal, the path control signal routes the 15b sample di-
rectly to the memory input for its initialization. With the next
indication of stimulation by the stimulus timing signal, the IIR
system executes the SAR algorithm as previously described. If
the memory initialization setting is not enabled by the user, the
memory can be cleared to start with zero internal values, but
this would increase the IIR system response time as previously
shown in Fig. 2.

The 16b, 4K memory is implemented using the internal
SRAM of the FPGA. Even parity is used to check for memory
error, which is generated by an XOR function of all the bits in
each 15b sample. The parity bit is then added to the end of the
data bits before being written into the memory as a 16b sample.
When the memory data are read out, a parity checker checks
for memory error, and this information is sent to the output.
The 15b sample is also sent to the rest of the SAR algorithm
circuitry for template generation. Including the memory parity
check feature, while not entirely necessary for an FPGA-based
system, would streamline the design translation from an FPGA
to an IC platform in the future.

The blanking control signal, which is also received from the
digital control unit, is used to remove any residual artifacts in
the output after template subtraction. Specifically, this control
signal activates a multiplexer that replaces the output data with
“0” for the time period in which blanking is applied, which is
normally at the rising and falling edges of the artifact where it

rapidly changes with time. The user can independently set the
blanking duration around the rising and falling edges from 0
(i.e., no blanking) to 2,047 data points.

The three registers in Fig. 6 are used for pipelining in order to
overlap the processing in each stage and prevent harmful race
conditions with proper timing control. Further, since the SAR
algorithm circuitry operates synchronously with a system clock,
all circuit blocks (except the parameter register) share the same
system clock signal globally and use a local Enable signal for
synchronization [32].

V. FPGA MEASUREMENT RESULTS

The DSP unit as depicted in Fig. 6 has been synthesized and
mapped to the Cyclone II FPGA, EP2C35F672C6, using Al-
tera’s Quartus II design software. The mapped circuitry con-
sumed 2% (656) of the total available logic elements (LEs) and
14% (65,536) of the total available memory bits. The DE2 board
was programmed and connected to a digital data acquisition
(DAQ) card, NI 6541, which provided the input signal to the
FPGA and recorded the output waveforms. The system clock
was applied to the FPGA using the onboard external clock port,
and a supply of 9 V was used to power up the board with its
input-output (I/O) ports at 3.3 V. For all FPGA measurements
described below, factors Ky and K5 (see Fig. 6) were both set
to 1/16.

Two sets of prerecorded neural data from two different labo-
ratories were used to experimentally verify the operation of the
IIR SAR algorithm and its FPGA implementation. Specifically,
a 294-s window of prerecorded neural data from a rat was used
as the first dataset. The rat data were sampled at ~24.4 kHz
and obtained during 4-Hz cortical stimulation. A gain of 520
(~54.3 dB) was applied to the neural data before feeding it to
the FPGA. The SAR algorithm was set to operate for 5 ms upon
receiving an indication of stimulation by the stimulus timing
signal, and no output blanking was applied.

A 125-s window of prerecorded data from an Aplysia califor-
nica (a marine sea slug) was used as the second-neural dataset.
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Fig. 7. FPGA measurement results using prerecorded neural data from a laboratory rat. (a) Top plot shows a 294-s window of the input data to the FPGA. Middle
plot depicts the generated stimulus artifact template signal, whereas the bottom plot shows the IIR system output from the FPGA. Two 5-ms snapshots of the

waveforms are shown at (b) t =~ 208 s and (c) t =~ 236 s.

The Aplysia data were sampled at 2 kHz and obtained during
0.5-Hz stimulation. A gain of 1,000 (60 dB) was applied to the
neural data before feeding it to the FPGA. Upon receiving an in-
dication of stimulation by the stimulus timing signal, the SAR
algorithm was set to operate for 96 ms (the duration of stim-
ulus artifact in the Aplysia dataset was much longer than that in
the rat dataset), and output blanking was set to occur for 4 ms
synchronized with the rising and falling edges of the stimulus
timing signal. The applied gain values represented those pre-
viously obtained with our neural-recording front-end operating
from 1.5 V [3]. The gain values were high enough to achieve
sufficient resolution at the DSP unit input, while keeping the
amplitude of the amplified neural data below 1.5 V.

Fig. 7 shows the FPGA measurement results using the rat
neural dataset. The top plot in (a) depicts the input neural data
to the FPGA, consisting of neural spikes buried in large stim-
ulus artifacts. The middle plot shows the generated artifact tem-
plate signal after memory initialization as previously described.
Note the fast response time of the IIR SAR algorithm in quickly
generating the template signal even for the initial stimulus ar-
tifacts, as well as how fast the generated template signal tracks
the variation in stimulus artifact amplitude in the first 100 sec-
onds. The bottom plot depicts the IIR system output from the
FPGA in which the large stimulus artifacts are rejected and the
neural data recovered in real time.

Fig. 7(b) and (c) depict 5-ms snapshots of the waveforms at
t = ~208 s and ~256 s, respectively, demonstrating that the
system is fully capable of recovering neural action potentials
that occur on the tail end of the artifact [see Fig. 7(c)] or appear
as close as within 0.5 ms after the artifact spike [see Fig. 7(b)].

The slight discrepancy between the amplitude of the input
artifact and that of the template signal is because the template
signal actually represents the highpass filtered artifact.

Fig. 8 shows a 5-s snapshot of the waveforms in Fig. 7(a)
around the onset of stimulation and their corresponding
spectrograms obtained using 1,024-sample windows with
1,000-sample overlap. As can be seen in the top and middle
spectrograms, the artifacts in the rat neural dataset have strong
frequency components below 5 kHz that are significantly re-
duced in the output (see the bottom spectrogram), allowing the
weaker neural activity to emerge from the large artifacts. For
the very first stimulus artifact at just prior to t = 2.5 s, which
is the one loaded into the memory for its initialization, the
corresponding template signal would be 1/16th of the artifact
according to (2), and therefore 15/16th of the artifact appears in
the output data after subtraction. The IIR SAR algorithm then
removes all the subsequent stimulus artifacts starting with the
second one. If present, artifact residuals as seen in Figs. 7(b)
and (c) in the time domain and Fig. 8 in the frequency domain
(bottom spectrogram) are now insignificant as compared to the
neural action potentials.
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Fig. 9 shows the FPGA measurement results using the
Aplysia neural dataset and their corresponding spectrograms.
The top plot depicts the input neural data to the FPGA, con-
taining many large stimulus artifacts that occur at 0.5 Hz and
bursts of extracellular neural activity that occur in between
and occasionally on the tail end of the artifacts. The middle
plot shows the generated artifact template signal and its spec-
trogram, indicating that the artifacts have their frequency
components spread throughout a 1-kHz bandwidth with strong
frequency components contained below 200 Hz. The bottom
plot shows the FPGA output data after blanking in which all
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Fig. 10. Top plot shows a 96-ms portion of the Aplysia neural dataset, showing
a total of 61 unfiltered stimulus artifacts superimposed on each other with some
action potentials riding on the tail end of the artifacts. Middle plot depicts
the 61 stimulus artifact templates superimposed on each other, which actually
represent the highpass filtered artifacts (not shown). Bottom plot shows the
artifact-free FPGA output in which the neural spikes are recovered after
template subtraction. Residual artifacts are also simultaneously removed after
4-ms blanking (arrows). Note the smaller dynamic range of the Y-axis in the
bottom plot after artifact removal and residual blanking.

stimulus artifacts (minus the first one as explained previously)
are successfully removed from the recorded data in real time to
recover the neural activity.

Fig. 10 shows a close-up view of the waveforms during
the 96-ms period of operation for the SAR algorithm. The top
plot depicts 61 unfiltered stimulus artifacts superimposed on
each other (i.e., all the artifacts present in the 125-s window
of Aplysia neural dataset minus the very first one), with some
action potentials also occurring on the tail end of the artifacts.
The middle plot shows the corresponding artifact templates
superimposed on each other, whereas the bottom plot depicts
the artifact-free IIR system output from the FPGA after tem-
plate subtraction and 4-ms blanking (arrows) for simultaneous
removal of the artifacts and artifact residuals, respectively,
demonstrating successful operation of the algorithm and its
hardware implementation.

In order to assess the performance of the IIR SAR algorithm
and its hardware implementation in a quantitative manner, a
total of 908 stimulus artifacts (54 of 62 and 854 of 1,000 ar-
tifacts in the Aplysia and rat neural datasets, respectively) were
analyzed. Specifically, the mean and standard deviation of the
root-mean-square (rms) values of the artifacts were computed
pre- and post-processing by the FPGA.

The analysis excluded the very first artifact in each neural
dataset and those artifacts that had action potentials present any-
where in their duration over which the algorithm was operating
(96 ms and 5 ms for the Aplysia and rat artifacts, respectively).
This ensured that the occasional presence of action potentials
did not confound the analysis. The same statistics were also ob-
tained from segments of the FPGA output that represented pure
noise (i.e., absence of both action potentials and artifact resid-
uals). Table I tabulates the results of this analysis. In the case of
Aplysia neural dataset that contains relatively stationary stim-
ulus artifacts (see the top plot in Fig. 9 and note the small stan-
dard deviation value in Table I), the rms value of the artifact
on average is reduced by a factor of 17, resulting in post-pro-
cessed rms values that are at the level of that:forgthe output
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TABLE I
STATISTICS OF PRE- AND POST-PROCESSED STIMULUS ARTIFACTS

Aplysia californica (54 of 62 SAs)

Mean (LV ) SD (WVims)

Pre-Processing 68.33 1.21
Post-Processing 4.01 0.68

Output Noise 3.83 0.16

Rat (854 of 1,000 SAs)

Pre-Processing 115.74 21.72
Post-Processing 21.65 16.70

Output Noise 5.03 0.46
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Fig. 11. Root-mean-square (rms) value of the stimulus artifacts (854 of 1,000)
in the rat neural dataset pre- and post-processing by the FPGA. The dashed line
represents an average rms value of 5.03 4V for the output noise obtained from
10 different 5-ms segments that did not contain any action potentials or artifact
residuals.

noise. In the case of rat neural dataset that contains both sta-
tionary and non-stationary artifacts (see the top plot in Fig. 7(a)
and note the larger standard deviation value in Table I), the re-
duction in the rms value on average is more modest (a factor of
5.3). A closer look at the rms values of individual stimulus ar-
tifacts pre- and post-processing reveals that the degradation of
performance is limited to when there is a sudden change in the
artifacts (see Fig. 11 and compare its trend with how the arti-
facts are changing in the top plot of Fig. 7(a)), whereas the rms
values of the post-processed artifacts indeed approach that of
the output noise when the artifacts are relatively stationary.

VI. CONCLUSION

This paper reported on a neural signal-processing algorithm
for real-time stimulus artifact rejection (SAR) in which a high-
fidelity template signal representative of the stimulus artifacts
was first generated via temporal filtering and subsequently sub-
tracted from the contaminated neural data to remove the arti-
facts. A system architecture for the IIR implementation of the
algorithm was realized in hardware on an FPGA platform, fea-
turing memory initialization as a simple method to significantly
decrease the IIR system response time for accurate template
generation. The measured FPGA results using two sets of prere-
corded neural data from a rat and an Aplysia californica verified
the functionality of the algorithm and its hardware implementa-
tion by removing the stimulus artifacts in real time from the con-
taminated recorded data and recovering the extracellular neural
activity.

The major advantage of this approach as compared to the
blanking techniques (i.e., disconnecting the recording amplifier

input during stimulation) is that it has the potential to retain
signal information during stimulation while fully eliminating
the artifacts from the contaminated data record in real time. On
the other hand, one limitation of this approach is that it does not
directly address the problem of amplifier saturation and hence
becomes less effective with prolonged amplifier saturation, un-
less care is taken in the design of the recording and stimulating
circuitry to prevent (or at least minimize) amplifier saturation by
decreasing the duration and amplitude of the artifacts [18]—[20].
Another limitation of this approach is that if neural activity oc-
curs on the tail end of the artifact and is time-locked to stim-
ulation, it will be removed by the system along with the arti-
facts. Similarly, if neural activity occurs during the rising/falling
edges of the artifact spike, it will be lost, because it will be either
blanked out by the system or heavily distorted by the residuals
with no blanking.

This technique can potentially handle other stimulation sce-
narios as well, given that it only needs the stimulus timing signal
information for correct operation. For example, if stimulation
occurs simultaneously on two electrodes, a combined stimulus
artifact might appear on the recording electrode that can be re-
moved even by the current system. If stimulation occurs alter-
nately on two electrodes, two different stimulus artifact types
might appear alternately as well on the recording electrode and
can be removed by modifying the timing operation of the system
to handle each artifact type independently, if there is no tem-
poral overlap between the artifacts. Ultimately, a tradeoff exists
between functional versatility and system operation complexity.

Finally, given the relatively low system clock frequency of
<1 MHz in this work and that the synthesized algorithm uti-
lized a very small percentage of the available FPGA resources,
it was not readily feasible to accurately determine the power
consumption in hardware implementation. Efforts are currently
under way for custom implementation of the DSP unit in Fig. 1
on an IC that would also incorporate recording front-end and
stimulating back-end circuitry adapted from [3] to form a com-
plete system. To that end, our preliminary work shows that the
DSP unit can be implemented with a total area of 3.64 mm?
(89% occupied by the 16b, 4K SRAM) in 0.35-zm CMOS tech-
nology with power consumption on the order of low-tens of mi-
crowatts from 1.5 V (1-MHz system clock), indicating the fea-
sibility of running the algorithm on a miniaturized, integrated
device in the near future.

APPENDIX

In this Appendix, we show the derivation of (3) in Section II:
SAR Algorithm. As previously stated, based on Fig. 1

Yn = (1 - K) *UYn—-1 + K- jors (Al)
where n = 1,2, 3,.... Hence, it is simple to see that
y=01-K) y+K-
y2=01-K) pn+K-
=(1-K)? yo+ K-(1 - K)-wyEi o {A2)
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which means that the template signal for the mth artifact can be
written as

Ym — (1 - K)nl * Yo + K- [’Tm

+(1-K) 2y 14+ +0-K)™ 2] (A3)
where yq is the initial condition of the memory. Assume that
T1,T2,... T, are all equal to the steady-state artifact template

signal, y,,. Therefore

Ym,
Yss

= (1_K)HLYO+K[1+(1_K)+ . "|‘(1—K)m—1] (A4)

where Yy = (y0)/(yss) is the initial condition of the memory
normalized to the steady-state artifact template signal. Given the
sum of geometric series, it can be shown that

I+(1-K)+--+(1-K)" 1!

_ 1 _ (1 _ K)'rn

1-(1-K)

1-(1-K)™
= A5
- (A3)

which means that (A4) can be simplified to

Z— —(1-K)"-Yy+1—(1-K)™ (A6)

If Yy < 1, for generating an accurate template signal with error
less than, e.g., 0.1%, one needs to have (¥,,)/(yss) > 0.999,
which means (1 — K)™.(1 — ¥5) < 0.001 from (A6). Taking a
logarithm of both sides and noting that log;,(1 — K) < 0, one
can obtain

=3 —logo(1 —Yo)
m > - . (A7)
log(1 - K)

If Yy > 1, for generating an accurate template signal with error
less than 0.1%, one needs to have (¥,,,)/(¥ss) < 1.001, which
ultimately leads to

—3—log,o(Yo—1)
m > - . (A8)
log(1 - K)
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Abstract This paper presents a neural interface system-
on-chip (SoC) featuring combined spike recording, electri-
cal microstimulation, and real-time stimulus artifact rejec-
tion (SAR) for bidirectional interfacing with the nervous
system. The SoC integrates a spike-recording front-end with
input noise voltage of 3.42 uV,, (0.5 Hz-50 kHz), mi-
crostimulating back-end for delivering charge-balanced
monophasic or asymmetric biphasic current pulses of
<100 pA with passive discharge, and pW-level digital
signal processing (DSP) unit for real-time SAR based on
template subtraction. The DSP unit initializes its embedded
16b, 4 K static random-access memory with the first recor-
ded stimulus artifact to reduce the operation time in gener-
ating an accurate artifact template signal for subtraction.
Fabricated in AMS 0.35 pm 2P/4M CMOS, the 3.1 x
3.1-mm? SoC has been characterized in benchtop tests and
neurobiological experiments with isolated buccal ganglia of
an Aplysia californica (a marine mollusk). The SoC can
successfully remove mV-range stimulus artifacts with
duration up to ~ 115 ms from the contaminated neural data
in real time and recover pV-range extracellular neural spikes
that occur on the tail end of the artifacts. The average root-
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mean-square (rms) value of the pre-processed stimulus
artifact is reduced by a factor of ~24-30 post-processing,
with DSP unit power consumption of <25 uW from 1.5 V.

Keywords Closed-loop neuroprostheses - Neural
recording - Neural signal processing - Neurostimulation -
Stimulus artifact rejection - System-on-chip - Template
subtraction

1 Introduction

Stimulus artifact rejection (SAR) is an integral feature of
the next-generation, bidirectional, neural interface micro-
systems that aim to combine electrical stimulation and
neuroelectrical recording in a single device. Large stimulus
artifacts often mask the neural activity-of-interest, either
preventing the analysis of stimulus-evoked recorded data
[1], or limiting the efficacy of activity-dependent stimula-
tion in closed-loop operation [2, 3].

Blanking techniques in which the recording amplifier
input is disconnected during stimulation have traditionally
been effective in rejecting large, saturating stimulus arti-
facts at the expense of no viable recording during stimu-
lation [4-9]. Using active feedback circuitry to provide a
low-impedance discharge path for the stimulating electrode
[10, 11], and careful stimulator design related to the iso-
lation of stimulation channels and parasitic current injec-
tion [12] have been shown to decrease the duration and
amplitude of the artifacts. However, these approaches
cannot fully eliminate them, often leaving behind consid-
erable residual artifacts.

On the other hand, more complex subtraction techniques
typically employ digital signal processing (DSP) algorithms
to generate a high-fidelity template signal representative of

@ Springer
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the stimulus artifacts for subsequent subtraction from the
contaminated neural data, resulting in artifact removal [13—
15]. This is based on the premise that the overall shape,
dynamic range, and timing of the stimulus artifacts do not
significantly vary over consecutive stimulation cycles.
Hence, subtraction techniques have to rely on full-scale
recording of the stationary stimulus artifacts for accurate
template signal generation, but offer the advantage of
retaining signal information during stimulation.

Since subtraction techniques require DSP algorithms for
template signal generation, they have traditionally been
implemented offline on a home-base computer post-data
acquisition. To execute a subtraction-based SAR algorithm
in real time (i.e., as the recording is taking place), a suitable
template-generation technique should be realized in hard-
ware after optimization and validated using real neural
data. To that end, Wichmann and Devergnas have recently
reported an artifact-removal device based on template
subtraction, which employs commercial off-the-shelf
(COTS) components such as a microcontroller as well as
analog-to-digital and digital-to-analog converters [16]. The
device employs digital averaging of the recurrent, station-
ary artifact waveforms [15] in order to generate and update
a template signal that is subtracted from the contaminated
data record on subsequent occurrences of the artifact.

We have previously assessed the feasibility of hardware
implementation of a similar subtraction-based SAR algo-
rithm using the well-established infinite impulse response
(IIR) temporal filtering technique for template generation
[17], and successfully realized a hardware-optimized, IIR-
SAR algorithm on a field-programmable gate array (FPGA)
platform [18]. In this paper, we present very-large-scale
integrated (VLSI) implementation of the optimized IIR-
SAR algorithm using a custom, low-power DSP architec-
ture, which is co-integrated with recording and micro-
stimulating circuitry to create a standalone, proof-of-
concept, prototype system-on-chip (SoC) featuring low-
noise neural recording, programmable neurostimulation,
and real-time stimulus artifact removal for bidirectional
interfacing with the nervous system [19]. The SoC func-
tionality is validated in neurobiological experiments with
isolated buccal ganglia of an Aplysia californica (a marine
mollusk), an experimentally tractable and well-studied
invertebrate model system for stable, repeatable tests.

The paper is organized as follows. Section 2 briefly
describes the IIR-SAR algorithm. Section 3 presents the
system architecture of the SoC and Sect. 4 presents the
integrated circuit architecture of the recording, micro-
stimulating, and signal-processing blocks within the SoC.
Section 5 presents our measured results from the SoC, and
Sect. 6 finally draws some conclusions from this work.

@ Springer

2 IIR implementation of SAR algorithm

In this section, we briefly describe the template subtraction-
based, [IR-SAR algorithm that was previously developed
in MATLAB™ simulations [17] and optimized for hard-
ware implementation [18]. Template signal generation is
achieved by averaging a number of the properly shifted
versions of the input neural data, which also contain the
stimulus artifacts. This can be mathematically expressed
as:

N

(6) =" aln) - x(t = nTy), (1)

n=|

—_

where y(?) is the estimated template signal, x(?) is the input
neural data, N is the number of stimulus artifact waveforms
used for averaging (i.e., averaging depth), a(n) are the
averaging factors, and T, is the stimulation period. In
order for the artifact and its template to have equal
amplitudes, the averaging factors should sum up to unity
and can be all equal to //N for common averaging.

Figure 1 depicts the architecture for IIR implementation
of the SAR algorithm, depicting the number of bits for the
internal nodes after considering dynamic range and fraction
length requirements for optimum performance with a 10b
recording front-end [18]. To generate a template signal
representative of the stimulus artifacts, temporal filtering is
employed in the form of an exponentially weighted moving
average, (EWMA) [20], of several properly shifted ver-
sions of the input neural data containing the stimulus
artifacts. This can be represented by:

o= (1—=K)y,—1 + K.x,, (2)

where y, is the new artifact template signal, y,_; is the
previous template signal, and x,, is the input neural data.
Hence, the template signal is retained in a memory, and a
new template signal is generated from the previous tem-
plate signal and the input neural data according to (2),
which is then subtracted from the input neural data. Factor
K (<1) plays a similar role as N in (1) and affects the IIR
system response time and accuracy. Specifically, increas-
ing the averaging depth avoids significant presence of
neural noise (i.e., residual neural activity) in the stimulus
artifact template signal that can otherwise lead to undesired
attenuation of the neural activity at the output upon tem-
plate subtraction. This is obviously achieved at the expense
of longer response time for the IIR-SAR system in creating
an accurate artifact template signal [17]. Furthermore, if
I1 — Kl <1, the Ist-order IIR system in (2) that has a
single pole at (1—K) would be stable [21]. Factor K can be
selected as 1/2 (with i being an integer) to alleviate the use
of multipliers in VLSI implementation.
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Figure 2 shows the system architecture of the proof-of-
concept, bidirectional neural interface SoC that comprises
a spike-recording front-end and programmable microsti-
mulator, as well as an embedded DSP unit for real-time
SAR. The SoC operates from 1.5 V, except for the stim-
ulating electrode driver stage in which 5 V is used for
enhanced voltage compliance.

The recording front-end performs ac amplification, dc
baseline stabilization, highpass filtering, and 10b digitiza-
tion of the neural data with digitally programmable gain
and bandwidth. The microstimulator delivers trains of
charge-balanced monophasic or asymmetric biphasic cur-
rent pulses followed by passive discharge, with digitally
programmable current pulse amplitude and externally
controllable current pulse duration, frequency, and number
within a stimulus train, as well as polarity of the leading
phase. The DSP unit performs additional highpass filtering
digitally to remove any residual dc offset or low-frequency
noise, and performs real-time stimulus artifact removal
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based on template subtraction, as previously described in
Sect. 2. The next section presents each SoC building block
in further detail.

4 Integrated circuit architecture
4.1 Recording front-end

Figure 3 depicts the circuit schematic of the spike-record-
ing front-end, comprising a low-noise amplifier (LNA)
with adjustable high cutoff frequency (HCF), G,,—C
highpass filter (HPF) with adjustable low cutoff frequency
(LCF), variable-gain amplifier (VGA) with adjustable off-
set, and 10b successive-approximation register analog-to-
digital converter (ADC) [3]. It features an overall bandpass
frequency response with eight different gain values in
49-65.6 dB at 1 kHz, with the LNA providing fixed 32 dB
of ac gain via capacitive feedback and dc baseline stabil-
ization via a MOS-bipolar pseudo-resistor in parallel with
the feedback capacitor [22]. With the ac gain nominally set
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Fig. 2 System architecture of the bidirectional neural interface SoC with real-time SAR capability
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Fig. 3 Circuit schematic of the
spike-recording front-end
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to 60 dB, the bandwidth can be programmed from
<0.1 Hz-12.3 kHz to 390 Hz-6.4 kHz by digitally tuning
the G,,—C HPF and LNA bias currents.

The 10b successive-approximation register ADC, whose
capacitive network is driven by the preceding VGA, is
nominally clocked at 1 MHz. Each ADC conversion cycle
takes 28 clock cycles in which 16 cycles are dedicated to
sampling, 1 cycle to hold, 10 cycles to approximation, and
1 cycle to reset; thus providing a sampling frequency of
35.7 kSa/s that is adequate for recording single-unit neural
spikes with frequency content up to 10 kHz. The extended
sampling period helps relax current drive requirements of
the preceding VGA for low-power operation.

4.2 Microstimulator

Figure 4(a) shows the circuit schematic of the 6b current-
based digital-to-analog converter (DAC) and electrode
driver stage of the electrical microstimulator. The electrode
driver operates from 5 V and integrates a pair of pMOS
(anodic) and nMOS (cathodic) current sources with
thick-oxide transistors and boosted output impedance
(>100 MQ) via negative feedback, provided by two op-
amps, A; ,, for constant-current stimulation [3]. The DAC
operates from 1.5 V and outputs a programmable current in
0-2.2 pA with 6b resolution that is then amplified to
generate a maximum current of ~ 100 pA, which is ade-
quate for a variety of applications in both the intracortical
[2, 23] and intraspinal microstimulation [24, 25] para-
digms. The DAC also employs a 4b current-adjust mech-
anism to fine tune the desired output stimulus current in the
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presence of process and voltage (PV) variations. Additional
circuitry is used in the electrode driver to control the gate
voltage of transistor M3 in the nMOS current source and
limit the drain-source voltage across M ;to ~ Vpp/2 (i.e.,
~2.5 V) for avoiding hot-carrier effects when the stimulus
site voltage is near the supply rail [26].

The microstimulator can be programmed to generate two
different types of stimulus current pulses. In one case shown
in Fig. 4(b), a monophasic stimulus can be generated with a
constant-current phase duration of 74 and 6b-programmable
amplitude of I, which is followed by a passive discharge
phase to drain the accumulated charge on the stimulation site
using a 2b-programmable resistor combination in the range
of 4.6 to 32 kQ. In another case shown in Fig. 4(c), an
asymmetric biphasic stimulus can also be generated in
which the cathodic-phase current is set to be 1/3 of that in the
anodic phase via proper transistor sizing ratios for optimal
use of the available voltage headroom (5 V). For the current
pulse waveform in Fig. 4(c) to be theoretically charge-bal-
anced, T¢ should nominally be set equal to 3 x T4. In
practice, however, the ratio of current levels in the anodic
and cathodic phases can deviate from 1/3 due to PV varia-
tions and transistor mismatches. Hence, passive discharge is
also performed after each stimulus cycle to drain any
residual charge left from charge mismatch between the
anodic and cathodic phases [27-29]. Furthermore, in this
proof-of-concept SoC with limited number of stimulus
channels, an external dc-blocking capacitor can also be
placed in series with the electrode-tissue interface to prevent
any net dc current flow into the tissue arising from charge
imbalance or semiconductor failure.
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Fig. 4 Top—a circuit schematic of the microstimulator. Botfom—measured b monophasic and ¢ asymmetric biphasic stimulus current
waveforms with passive discharge delivered by the microstimulator to saline via a silicon-substrate, “Michigan” electrode

4.3 DSP unit

The major building blocks of the DSP unit include a digital
HPF, digital control unit, and a SAR processor, which in
turn comprises a computational unit, 16b static random-
access memory (SRAM), and parity generator/checker to
identify potential memory errors. A reset synchronizer
generates an internal signal, Sync Reset, to asynchronously
reset the DSP unit when the signal is low [30]. A 68b
register is used to store user-set parameters such as

bandwidth setting of the digital HPF and SAR coefficient,
K, as well as memory-initialization, memory-length, and
output-blanking settings. The requisite memory length (i.e.,
# of 16b samples) depends on the sampling frequency and
time duration over which the SAR algorithm operates,
which should be at least equal to the stimulus artifact
duration for proper operation. With a nominal sampling
frequency of 35.7 kSa/s in the recording front-end and
SRAM size of 4 K in the DSP unit, the SoC can process
stimulus artifacts up to ~ 115 ms in duration. A smaller
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memory can always be used for a lower sampling fre-
quency in the recording front-end or shorter artifacts.

Figure 5 depicts the structure of the digital HPF and
SAR processor in the DSP unit. The digitized neural
sample (10b) from the ADC is first highpass filtered using a
Ist-order filter with direct form II architecture and adjust-
able LCF. Factor K is set as 1/16 or 1/8, resulting in LCF
of 366 or 756 Hz, respectively, with a system clock of
1 MHz. An overflow/underflow detector at the HPF output
limits its dynamic range to 10b before feeding the SAR
processor.

The SAR processor only operates for the duration of
each stimulus artifact and uses fixed-point computation for
simplicity, with 15b representation at its internal nodes to
mitigate quantization noise effects on template signal
accuracy [18]. The digitized/filtered sample at the HPF
output (10b) is first converted to 15b and then multiplied by
factor K, (same as K in (2), 1/16 or 1/32 in this work)
stored in the 68b parameter register. Next, the memory data
containing the previous template signal are read, multiplied
by (I—K3), and added to (K. x,) to obtain the new tem-
plate signal (15b), which is written back into the 16b
memory for the next cycle after an even-parity bit addition.
The new template signal is also converted back to 10b and
subsequently subtracted from the 10b digitized/filtered
input sample to produce the SAR output signal. Outside the
duration of the artifact, the SAR processor is disabled, and
the sample at the HPF output is directly routed to the output
register. The three registers in Fig. 5 hold the data for

processing in each stage with proper timing control. Instead
of sharing the same global clock signal and using a local
enable signal to synchronize the registers [18], clock gating
is used for low power consumption.

Figure 5 also depicts the DSP unit’s timing operation for
two consecutive stimulus artifacts assumed to be the very
first and second artifacts. Using the Path Control signal
generated by the initialization controller of the digital
control unit, the computational unit of the SAR processor
(SAR-CU) initializes the memory with the very first
recorded stimulus artifact, which is shown to significantly
decrease the response time of the IIR-SAR algorithm in
generating an accurate template signal, especially when
artifacts are highly reproducible in consecutive stimulation
cycles [31]. Further, using the Blanking Control signal
from the digital control unit, SAR-CU removes any resid-
ual artifacts in the output after template subtraction, espe-
cially at the rising and falling edges of the artifact where it
rapidly changes with time.

Figure 6 depicts the architecture of the digital controller
of the DSP unit, comprising a timing generator and several
finite-state machine (FSM) controllers to manage the SAR
processor operation, memory operation and its initializa-
tion, as well as output blanking. The timing generator
creates all internal timing signals for the digital control
unit, as well as the gated clocks for the digital HPF and the
three registers in Fig. 5. The SAR operation controller and
its associated counter (Cl) respectively generate the
internal SAR Enable signal and the Address signal to access
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Fig. 5 Architecture of the digital HPF and SAR processor of the DSP unit along with illustration of the DSP unit’s timing operation for two

consecutive artifacts
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Fig. 6 Architecture of the digital controller of the DSP unit along with its three finite-state machines (FSMs)

the memory between the start (Ap) and end (A4,,) locations.
Specifically, the SAR operation controller detects the rising
edge of the Stimulus Timing signal upon which SAR Enable
is activated and counter C1 is loaded with A, (12b). Next, it
commands the counter to up-count from A, until the end
memory location, A, (12b), is reached upon which SAR
Enable is deactivated until the next rising edge of the
Stimulus Timing signal arrives. Hence, the time duration
over which the SAR processor operates (i.e., when SAR
Enable is high) is programmable via the user-set memory-
length setting, and should be ideally equal to the stimulus
artifact duration (and not much longer) to save processing
power. The SAR processor is disabled when SAR Enable is
low (i.e., outside the stimulus artifact duration).

The blanking controller and its two associated counters
(C2 and C3) generate the Blanking Control signal. Spe-
cifically, the blanking controller detects the rising edge of
the Stimulus Timing signal upon which counter C2 is loa-
ded with the Rise-Edge Blanking Length (REBL) parameter
(11b). Next, counter C2 activates the Rise-Edge Blanking
signal and starts to down-count from REBL until the
counter value reaches zero upon which Rise-Edge Blanking
is deactivated. Upon detecting the falling edge of the
Stimulus Timing signal, the same process is repeated by the
blanking controller and counter C3 to generate Fall-Edge
Blanking using the Fall-Edge Blanking Length (FEBL)
parameter (11b). By defining Blanking Control as the OR

function of the two internal timing signals, the user can
independently set the blanking duration from 0 (no
blanking) to 2,047 data points (~57 ms given the nominal
sampling frequency), synchronized with the rising and
falling edges of the Stimulus Timing signal (see Fig. 5).

5 Measurement results

A prototype chip was fabricated in AMS 0.35 pm 2P/4M
standard CMOS, measuring ~3.1 x 3.1 mm” including
the bonding pads. This section presents the measurement
results from electrical benchtop characterization and
neurobiological experiments in isolated buccal ganglia of
an Aplysia californica.

5.1 Benchtop characterization

The top plots in Fig. 7 depict the measured frequency
response and input noise voltage spectrum of the analog
recording front-end for three different bandwidth settings
and with the mid-band ac gain nominally set to 60 dB. The
LCF was programmable from <0.1 to 390 Hz, whereas the
HCF was adjustable in the range of 6.4-12.3 kHz. In the
right plot, note how the G,,—C HPF effectively removed
the flicker noise contribution, when the LCF was digitally
set to 260 and 390 Hz (the HPF was bypassed for the case
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Fig. 7 Top—measured gain (left) and input noise voltage (right) of
the analog recording front-end. Bottom—measured microstimulator
output current versus output voltage in anodic and cathodic phases

of the recording bandwidth of <0.1 Hz-12.3 kHz.) With
the bandwidth of the analog recording front-end set to
390 Hz-6.4 kHz, the input noise voltage measured in
0.5 Hz-50 kHz was 3.42 uV,,,, resulting in noise effi-
ciency factor (NEF) of 2.74 for the LNA.

The bottom left plot depicts the measured microstimu-
lator output current versus its output voltage for four dif-
ferent DAC input codes when sourcing and sinking current
in anodic and cathodic phases, respectively. The microsti-
mulator output voltage could reach at least 4.68 V (going
toward 5 V) and 154 mV (going toward O V) when
sourcing and sinking current, respectively, from 5 V. The
output impedance was measured to be >100 MQ (limited
by the precision of our measurement setup), sufficiently
high for constant-current stimulation.

To evaluate the DSP unit power consumption, two
prerecorded neural datasets from a rat (sampled at
~24.41 kHz and recorded during 4-Hz cortical stimula-
tion) and an Aplysia californica (sampled at 2 kHz and
recorded during 0.5-Hz stimulation) were used. These
datasets were collected as part of experiments that were
unrelated to this work and provided to us by two different
research laboratories.

The system clock frequency was set to ~684 and
56 kHz for the rat and Aplysia datasets, respectively (i.e.,
28 x their sampling frequency). The bottom right plot in
Fig. 7 shows the measured DSP unit power consumption
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versus requisite memory length, when processing each
neural dataset for artifact removal. The measured power
was in the range of 1.6-2.2 pW for the Aplysia neural
dataset and increased to 16.1-21.2 pW for the rat neural
dataset due to the higher system clock frequency. Within
each dataset, the measured power also increased with the
duration of the SAR Enable signal. Table 1 summarizes the
measured SoC performance.

5.2 Neurobiological experiments

The SoC functionality was next verified in neurobiological
experiments with isolated buccal ganglia of an Aplysia cali-
fornica [32]. Custom-made hook electrodes were made from
enamel-coated stainless steel wire (Catalogue # 100194,
California Fine Wire, 1-mil diameter) as previously described
in [33], and used for stimulating on branch A of buccal nerve 2
(BN2-A) and recording from either the buccal nerve 2 (BN2)
or buccal nerve 3 (BN3). The de-insulated region of the curled
hook was placed in direct contact with the nerves, anchored in
place with superglue, and electrically insulated from the fluid
medium using Kwik-Sil, whereas the de-insulated tip of the
reference electrode was left exposed to the fluid medium [33].
For recording purposes, these were connected to the inverting
(Vin_) and non-inverting (Vi,, ) inputs of the LNA, respec-
tively (see Fig. 3). Furthermore, V;,, was also connected to
the SoC ground connection.
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Table 1 Summary of measured SoC performance

RECORDING FRONT-END MICROSTIMULATOR
Max. BW <0.1Hz — 12.3kHz (HPF bypassed) Anodic | Cathodic
Min. BW 390Hz — 6.4kHz

AC Gain @ 1kHz 49 — 65.6dB

Stimulus Waveform

Asymmetric biphasic & monophasic
w/ passive discharge

RMS Input Noise 3.01uV (Max. BW) Max. Iout 100pA 34pA
(0.5Hz — SOkHZ) 3.42uvV (Min. BW) DAC Linearity <+1.9LSB
2.48 (Max. BW) .
NEF 2.74 (Min. BW) VO“?%SOImPl;aH“ 468V (of5V) | 4.846V (of 5V)
CMRR @ 1kHz 57.1dB vt
PSRR @ 1kHz 63.7dB DIGITAL SIGNAL PROCESSING UNIT
INL/DNL <£12LSB (ferx = IMHz)
ENOB 9b (£, = 35.7kSals) HPF LCF 366Hz (K, = 1/16); 756Hz (K, = 1/8)
Stimulus Artifact Duration <114.7ms
Power Consumption | 31.5uW (Max. BW; fe;x = IMHz) Blanking Duration <57.3ms
(Incl. ADC) 26.7uW (Min. BW; f;x = IMHz) | SAR Coefficient (K,) 1/16, 1/32
Power Consumption <25uW

Total Power Consumption w/o Microstimulator (Min. BW; f¢; x = 1MHz) = <51.7uW

The bandwidth of the analog recording front-end was
nominally set to the minimum range. In the DSP unit,
factors K; and K, were both set to 1/16, and memory ini-
tialization was enabled. Furthermore, the DSP unit was set
to operate for the duration of the stimulus artifact only,
which was determined a priori, to save processing power.
As shown in Fig. 8, an external stimulator was used for
these tests, since the current range of the on-chip micr-
ostimulator (<100 pA) was not enough for effective
stimulation on BN2-A. A home-base computer was used
for generating the Stimulus Timing signal, which was
applied to both the external stimulator and the SoC, as well
as for storing the serial output data from the SoC.

5.2.1 Case #1

In the first case, recording was performed from BN2, with the
gain of the analog recording front-end nominally set to the
minimum value to determine the largest stimulus artifact
dynamic range that could be handled by the SAR processor.
Stimulation was performed for 1 min at2 Hz with a stimulus
current pulse of 100 pA in amplitude and 1 ms in pulse-
width. The SAR processor was set to operate for 15 ms upon
receiving an indication of stimulation by the Stimulus Timing
signal, and output blanking was applied for 0.5 ms in syn-
chrony with the rising and falling edges of the Stimulus
Timing signal. Figure 9 depicts the measured results in
which plot numbers correspond to the node numbers in SAR-
CU of Fig. 5. Specifically, plot #1 shows a 15-ms window of
the input data to the SAR-CU, showing a total of 119 high-
pass-filtered stimulus artifacts superimposed. Plot #2 depicts
the 119 artifact templates generated by the DSP unit and

Isolated Buccal Test PCB

I Stimulus Timing | | I

Fig. 8 Illustration of the experimental setup for the neurobiological
tests

superimposed. Plot #3 shows the SAR-CU output signal
without blanking, showing significant rejection of the stim-
ulus artifacts after template subtraction, whereas plot #4
shows the SAR-CU output signal after template subtraction
and residual blanking. This experiment demonstrated the
SAR processor functionality in fully removing artifacts as
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large as ~5 mVp, from the recorded data in real time,
although no neural spikes could be detected due to sub-
threshold stimulation at 100 pA and the small gain of the
analog recording front-end. The DSP unit power consump-
tion was measured to be 23.3 uW (see Fig. 7).

5.2.2 Case #2

In the second case, recording was performed from BN3,
with the gain of the analog recording front-end nominally
set to the maximum value to enable neural spike recording.
Memory initialization with the first recorded artifact was
performed using a single current pulse at 100 pA for
subthreshold stimulation to avoid the presence of stimulus-
evoked neural spikes on the initial condition of the mem-
ory. This was then followed by 400-pA, 2-Hz stimulation
for 1 min, with the stimulus current pulsewidth always set
to 1 ms. The SAR processor was set to operate for 10 ms
upon receiving an indication of stimulation by the Stimulus
Timing signal, and output blanking was applied for 2.5 ms
in synchrony with the rising edge of Stimulus Timing.

Since memory initialization was performed based on
subthreshold stimulation, the initial condition of the
memory normalized to the steady-state artifact template
signal was <1. Hence, prior to any further data analysis, we
first determined the minimum number of stimulus artifacts
required to generate an accurate template signal [18]. The
template error was defined as:

v SA — Vrms, It
Error(%) _ |Yrms, rms,template % 100’ (3)
Vims,SA

where Vrms,SA and Vrms,template are the root-mean-square
(rms) values of the highpass-filtered stimulus artifact and
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Fig. 10 Error in template generation versus number of stimulus
artifacts

corresponding template signal, respectively, within the
10-ms duration of SAR processor operation. Figure 10
shows the template error plot that was calculated for each
stimulus artifact within the 1-min stimulation duration,
except for the very first artifact and those with neural
spikes present on their tail ends. As expected, the template
error decreased with the number of artifacts, requiring 20
and 60 artifacts to reach 10 and 1 % error, respectively.
Figure 11 depicts the measured results from case #2 in
neurobiological experiments after the template error
reached 1 %. Specifically, plot #1 shows a 10-ms window
of the input data to the SAR-CU, showing a total of 62
highpass-filtered stimulus artifacts superimposed (artifact
#60-121), with some (barely visible) neural spikes riding
on their tail ends. Plot #2 depicts the 62 stimulus artifact
templates generated by the DSP unit and superimposed.
Plot #3 shows the SAR-CU output signal without blanking,
showing significant rejection of the stimulus artifacts after
template subtraction, whereas plot #4 shows the SAR-CU
output signal with blanking in which the neural spikes were
recovered in real time (see arrows) after template
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Fig. 11 Measured results from 500
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Table 2 Statistics of pre- and
post-processed stimulus artifacts

Template error Mean (1V s) SD (WVims)
Case #1
<6 % (119 of 120 SAs) Pre-processing 285.6 4.7
Post-processing (w/o blanking) 13.2 59
Post-processing (w/blanking) 9.6 1.6
Output noise 7.1 0.2
Case #2
<10 % (97 of 121 SAs) Pre-processing 143.1 0.7
Post-processing (w/o blanking) 11.5 39
Post-processing (w/blanking) 6.2 0.7
<5 % (90 of 121 SAs) Pre-processing 143.1 0.7
Post-processing (w/o blanking) 10.9 32
Post-processing (w/blanking) 6.1 0.6
<1 % (60 of 121 SAs) Pre-processing 142.9 0.4
Post-processing (w/o blanking) 10.6 32
Post-processing (w/blanking) 6.0 0.5
Output noise 7.2 0.6

subtraction and residual blanking. The DSP unit power
consumption was measured to be ~24 uW (see Fig. 7).
In order to assess the SAR performance of the SoC in a
quantitative manner, a total of 216 stimulus artifacts (119 of
120 and 97 of 121 artifacts from case #1 and #2, respec-
tively) were analyzed. Specifically, the mean and standard
deviation of the rms values of the artifacts were computed
pre- and post-processing by the SAR processor of the DSP
unit. The analysis excluded the very first artifact in each
neural dataset and those artifacts in case #2 dataset that had
neural spikes present anywhere in their 10-ms duration over
which the SAR processor was operating. This ensured that
the occasional presence of neural spikes did not confound
the analysis. The same statistics were also obtained from
segments of the SoC output that represented pure noise (i.e.,
absence of both neural spikes and artifact residuals).

Table 2 tabulates the results of this analysis. As can be

seen, the mean rms value of the artifact was reduced by a
factor of ~30 and ~24 in case #1 and #2 (template error
<1 %), respectively, resulting in post-processed rms values
that were at the level of that for the output noise after
template subtraction and residual blanking.

6 Conclusion

This paper reported on a bidirectional neural interface SoC
for combined spike recording, electrical microstimulation,
and real-time stimulus artifact removal based on template
subtraction. In particular, the SoC integrated a low-power
DSP unit that could generate a high-fidelity template signal
representative of the stimulus artifacts via IIR temporal
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filtering and then subtract it from the contaminated neural
data to remove the artifacts. The SoC functionality was
demonstrated in neurobiological tests with isolated buccal
ganglia of an Aplysia by removing large stimulus artifacts
in real time from the contaminated data record and
recovering the neural activity that occurred on the tail end
of the artifacts. The power consumption of the spike-
recording front-end and DSP unit were measured to be
~27 uW and <25 puW, respectively, from 1.5 V.

One limitation of this approach is that it does not
address the problem of amplifier saturation and hence is
less effective with prolonged amplifier saturation, unless
care is taken in the design of the recording and stimulating
circuitry to prevent or minimize amplifier saturation by
decreasing the duration and amplitude of the artifacts [10-
12]. On the other hand, the major advantage of this
approach as compared to blanking (i.e., disconnecting the
recording amplifier input during stimulation) is the poten-
tial to retain signal information during stimulation, while
fully eliminating large stimulus artifacts from the con-
taminated data record in real time.
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Current research in brain computer interface (BCIl) technology is advancing beyond
preclinical studies, with trials beginning in human patients. To date, these trials
have been carried out with several different types of recording interfaces. The
success of these devices has varied widely, but different factors such as the level
of invasiveness, timescale of recorded information, and ability to maintain stable
functionality of the device over a long period of time all must be considered
in addition to accuracy in decoding intent when assessing the most practical
type of device moving forward. Here, we discuss various approaches to BCls,
distinguishing between devices focusing on control of operations extrinsic to the
subject (e.g., prosthetic limbs, computer cursors) and those focusing on control
of operations intrinsic to the brain (e.g., using stimulation or external feedback),
including closed-loop or adaptive devices. In this discussion, we consider the current
challenges facing the translation of various types of BCI technology to eventual human
application.

Keywords: brain-computer interface (BCI), microelectrodes, electrocorticography (ECoG),

electroencephalography (EEG), closed-loop neuroprosthetic devices, neural prostheses

INTRODUCTION

Brain-computer interfaces (BCIs) and their applications for treatment of nervous system damage
have shown enormous progress as functional restoration tools in pre-clinical studies. In general,
most BClIs are designed to bypass damaged structures and fiber tracts. BCIs range from common
devices, such as cochlear implants that use externally recorded sound to directly stimulate auditory
nerve fibers, to devices that derive control signals from cortical activity, allowing individuals
with paresis to operate a prosthetic device. Other BCIs are designed to aid in acute rehabilitation
training sessions. Regardless of the type, the major purpose of BCIs is to improve the quality of life
for the patients who use them.

Damage to the nervous system can result in profound sensory, motor, and cognitive
deficits that strongly impact day-to-day functioning of afflicted individuals. The type and
extent of these deficits are dependent upon the location and extent of the injury. Injuries
affecting motor cortex, such as might occur after a focal traumatic brain injury or stroke, can
lead to impaired use of digits, limbs, or whole regions of the body due to loss of descending
corticospinal neurons or disruption of sensory-motor integration. Spinal cord injury impacts
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communication of neural signals at the site of injury, leading
to motor, sensory and autonomic deficits. For these types of
injuries, there are no effective post-acute restorative treatments.
Research in stem cell therapy to regenerate damaged neurons
that could restore damaged pathways is currently underway
(Gavins and Smith, 2015; Hosseini et al., 2015; Sharma et al,,
2015; Sullivan et al., 2015), but is likely years from fruition.
Recovery after central nervous system (CNS) injury is thought
to manifest itself through neuroplastic mechanisms, which have
been shown to be aided through rehabilitative therapy (Nudo
et al, 1996; Nudo and Friel, 1999). Dramatic recovery from
motor deficits has occurred in some cases (Bajaj et al., 2015;
Warnecke et al., 2015), but recovery from neurological injuries
rarely results in a full restitution of function. Effectiveness
of any therapy is constrained by the type and extent of
injury, efficiency of neuroplastic mechanisms involved, and
type of intervention. BCIs offer a pathway, in conjunction
with rehabilitative therapy, for promoting restitution
of function.

Current technology available for clinical populations
ranges from simple devices that stabilize a shaking hand
(Popovi¢ Maneski et al, 2011; Grimaldi et al., 2013), to
devices that augment the ability of a patient with locked-in
syndrome to communicate with others (Holz et al., 2015).
While these technologies offer promise for recovery from or
for relief of symptoms of CNS injury, there are still many
challenges in the integration of BCIs into effective prosthetic
devices. These challenges include adequate spatiotemporal
resolution in interpreting information recorded from the
brain for naturalistic control, decoding a sufficient number
of degrees of freedom to maintain natural movements,
integration of feedback mechanisms, easing the technological
support needed for integration of the BCI and reducing
the invasiveness of components while maintaining the
longevity of signal acquisition. Additionally, a number of
recent studies have focused on devices contained entirely
within the CNS that create artificial links between related
areas. Here, we focus on the advantages and disadvantages
of various approaches to interfacing BCI devices with the
nervous system, based on results from both pre-clinical
and clinical studies. We highlight the challenges associated
with the implementation of high fidelity BCI devices to
a clinical setting, possible methods for overcoming these
challenges, and the distinction between devices that control
extrinsic operations and those that control operations intrinsic
to the CNS.

BCI OPERATING MODES

When considering potential clinical interventions using neural
prostheses, a convenient way of classifying devices is based
on whether they control extrinsic or intrinsic operations. In
this review, BCI devices that operate primarily by detection
of electrical signals from the CNS are mainly considered, as
techniques for recording other measures of CNS information
(i.e., magnetic, metabolic) are typically unwieldy for chronic use
or cost prohibitive.

Control of Extrinsic Operations

Neural prostheses are classified as controlling extrinsic
operations when the device contains a decoder that records
CNS signals in real-time, modifies those signals via a control
algorithm and outputs the translated and modified signal to a
body-external device such as a prosthetic or robotic limb or a
computer cursor. In this way the individual gains control over
an artificial device that has the possibility to be incorporated into
the body schema.

A limitation of devices controlling extrinsic operations is that
accuracy in decoding movement intention is typically gained
through an increase in the number of recording channels
(Carmena et al., 2003); however, increasing recording channels
brings the challenge of increasing channel density in a particular
location of interest. Depending on the type of information
being recorded and the decoding strategy, the increase in
computational burden and power required from adding greater
numbers of channels may also become nontrivial. Likewise,
increasing the invasiveness of the electrodes can lead to increases
in decoding accuracy, but at the cost of increased surgical
risk and potential immune response (Ward et al, 2009).
Additionally, chronic recordings are prone to drift in intent
decoding, making repeated calibration necessary. Although these
limitations prevent the widespread use of these BCI systems in
clinical settings, studies to date are encouraging and represent
tangible evidence of the type of functional restoration that
can be achieved using BCIs. Here, BCIs controlling extrinsic
operations are classified into three different categories based
on the electrode interface used for signal acquisition from the
CNS (Figure 1). These include two invasive electrode-CNS
interface approaches [microelectrode array (MEA) recording,
electrocorticography (ECoG)] and one non-invasive electrode-
CNS interface (electroencephalography, EEG).

Microelectrode Array Recording

MEA recording, used in animal models for decades, represents
the most invasive BCI approach, as penetrating microelectrodes
are placed within the brain structure itself, typically within
the gray matter of cerebral cortex. Though the technology was
initially developed in animal models, a relatively small number of
human studies have now been conducted with implanted MEAs.
Microelectrode probes can range from a single-shank electrode
to arrays consisting of tens of thousands of recording sites.
The specific pattern and distribution of sites allows for dense
population recordings throughout a single or multiple regions of
interest. MEAs allow the highest spatial and temporal resolution
of any type of neurophysiological recording system used in BCIs
(Obien et al.,, 2015), but at the expense of spatial coverage at
the site of recording. The use of MEAs allows for detection of
the extracellular electric field changes reflecting the membrane
potential of the individual neurons closest to the tip of each
microelectrode.

While the voltage changes are quite small, neuronal action
potentials, or spikes, can be detected within the electrical signal
since rapid changes in membrane potential associated with
the opening and closing of membrane ion channels have a
characteristic temporal pattern. Due to their rapid onset and
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Recording Device
Microelectrode Array

° 1_00 um

Resolution

g—

Human Studies

Aflalo et al. (2015)

Decoded recordings posterior parietal
cortex.

Perge et al. (2013)

Intra-day instability in recordings from
motor cortex.

Collinger etal. (2013)

Recordings from motor cortex allowed
tetraplegic individual to move robotic arm

Electrocorticography

with 7 degrees of freedom.

Hochberg et al. (2012)

Recordings from motor cortex allowed two
tetraplegic individuals to move a robotic
arm.

King-Stephens et al. (2015)

Chronic (average 4.7 years) recordings from
patients with long-term implants.

Bouchard and Chang (2014)

Recordings over speech cortices used to
decode vowel acoustic features.

Bleichner etal. (2014)

Recordings over hand knob area decoded

Electroencephalogram

hand gestures.

Kellis et al. (2012)

Recordings over motor cortex decoded
hand trajectory and controlled a cursor.

Ramos-Murguialday and Birbaumer (2015)
Identified EEG features associated with
different aspects of performing a motor
task with and without a BCI.

Bulea etal. (2014)

Decoded delta-band EEG signals from
healthy volunteers during a sitting and

FIGURE 1 | The resolution of each type of recording interface, as well as a selection of recent human studies associated with each interface. Red dots
represent the relative extent of recording interface placement, while inserts demonstrate the scale and possible arrangement of electrodes at that site.

standing task.

McFarland etal. (2010)

Implemented a BCI system with 3 degrees
of freedom in virtual space.

offset, the resulting detected spikes can be effectively reduced
to point processes using voltage thresholding, simplifying the
design of decoding algorithms, especially when large MEAs
are employed. Further analysis using automated or semi-
automated clustering algorithms or manual feature detection
allows classification of multiple individual neurons recorded
from a given recording site, increasing the accuracy of decoding

(Todorova et al., 2014). It should, however, be noted that
the process of detecting spikes introduces another source of
error, with some techniques sacrificing accuracy for the sake of
computational expedience (Rey et al., 2015). Depending on the
information that needs to be obtained from spike trains, these
errors can have a nontrivial significance (Pazienti and Griin,
2006).

Frontiers in Cellular Neuroscience | www.frontiersin.org

January 2016 | Volume 9 | Article 497


http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

Murphy et al.

Translation of Brain Computer Interfaces

Once spikes have been detected and multiple neuronal spikes
discriminated (if desired), typically the rate of firing (i.e., spike
rate) of the individual neuronal components is calculated. Both
accuracy and ease of computational processing are dependent
upon the combined choice of a spike rate estimator and a spike
rate decoder, with simpler methods allowing computations to
be performed on a millisecond time scale and more complex,
probabilistic models limiting computations to seconds or even
minutes (Cunningham et al., 2009). Based on these temporal
limitations, the practical need for real-time adaptation when
implementing a BCI makes some of the simpler methods more
attractive (Cunningham et al.,, 2011). To this end, it has been
demonstrated that the use of a closed-loop, adaptive decoder can
also lead to increased simultaneous neural adaption, resulting in
improved skill retention (Orsborn et al., 2014).

Preclinical BCI research in animal models has typically
utilized implanted MEAs chronically embedded in the cortex for
decoding movement intention. The rationale for this approach
dates to the 1960s when Evarts found that neurons in the
motor cortex of non-human primates (NHPs) altered their firing
patterns immediately prior to the onset of movement (Evarts,
1966) and was later strengthened when Fetz (1969) demonstrated
that neuronal firing rate could be volitionally controlled. More
recent studies in NHPs demonstrate a consistent ability to decode
signals to move transiently paralyzed limbs (Ethier et al., 2012), a
simulated or robotic limb (Wessberg et al., 2000; Carmena et al.,
2003; Velliste et al., 2008; Willett et al., 2013), or a cursor on a
screen (Taylor et al., 2002; Wu et al., 2004; Nuyujukian et al.,
2014), and even predict hand orientation with extremely high
accuracy (Peng et al., 2014).

MEAs have proven resilient in producing reliable signals from
a single area over periods of up to a year (Flint et al., 2013).
However, longevity of single unit recordings with indwelling
electrodes has been one of the major limitations of this approach.
For example, studies have shown a decay in signal strength
over the course of 100 days (Rousche and Normann, 1999),
and large performance variability between trials and type of
electrode used (Ward et al., 2009). Furthermore, information
generated by decoders has been shown to diminish over extended
implantations (Nuyujukian et al., 2014). This somewhat variable,
and arguably short, lifetime limit for recording robust signals
from implanted MEAs still needs to be addressed by future
improvements in MEA materials technology. While estimates of
the number of neurons needed to decode arm movements oft-
line range between 150 neurons with serial single unit recordings
and 600 units from MEAs (Georgopoulos et al., 1986), accurate
on-line BCI control is possible with far fewer recorded units
due to the closed-loop adaptation that occurs when learning
BCI skills (Taylor et al, 2002; Carmena et al, 2003). This
phenomenon could be a key to improving long-term patency of
indwelling MEAs. If it is possible to use only a subset of sites to
generate information for decoding, then as those sites slowly lose
functionality it may be possible to use redundant sites, allowing
for an extended prosthetic lifespan.

Although MEA studies in humans are limited due to their
invasive nature, recent results indicate the advantages of using
such high-resolution paradigms. Aflalo et al. (2015) found that

the decoding of spike trains associated with motor imagery in
a patient chronically implanted with MEAs embedded in the
posterior parietal cortex resulted in the smooth movement of
a robotic limb with 17 degrees-of-freedom. Two 96-channel
MEAs were embedded for 21 months with no signs of adverse
effects. The subject was asked to imagine reaching toward a
specific goal, and channels that demonstrated preferential firing
when the subject imagined achieving the goal were discriminated
from neurons tuned to trajectory. When these goal-tuned units
were used as tuners for accomplishing a specific task, decoding
accuracy was higher for a given number of units. It should be
noted, however, that the goal-tuned units changed over time,
indicating that an adaptive decoder would be important for this
sort of prosthetic device to be implemented in the future for long-
term implantations. This problem of varying tuning is also seen
in recordings from units in motor cortex (Perge et al., 2013).

These changes in tuning were most likely due to physiological
changes in the neuronal firing patterns as a result of
adaptation to the decoder. As the patient learns to operate
the BCI, functional reorganization occurs in multiple brain
areas, resulting from closed-loop feedback and adaptation to
performing the new BClI-related task, and presumably allowing
a smaller number of units to function in tuning the device
(Taylor et al., 2002; Carmena et al., 2003). The ability to produce
a smooth movement based on the decoding of a goal-tuned
unit represents a significant divergence from previous studies
involving chronically implanted MEAs in human patients. These
studies used motor cortex (Hochberg et al., 2006, 2012; Collinger
et al,, 2013) as an area for control, and were quite successful;
however, a noted limitation was that movements produced using
these systems were slower and somewhat inflexible (Hochberg
et al,, 2012) when compared to natural reaching movements.
Thus, the ability to use a goal-tuned unit in posterior parietal
cortex as a control source for decoding intent using motor
imagery could serve as an informative alternative to decoders
focused on motor cortex.

There are several additional challenges related to using MEAs
in BCIs for clinical populations. The insertion of MEAs into
cortical tissue is an invasive procedure requiring a craniotomy
and resection of the dura. The surgical procedure introduces a
possible pathway for infection. MEA implantation can lead to
small-scale tissue damage that increases with a greater number of
implants. Glial scarring occurs at the insertion site, and is thought
to be a major factor reducing the longevity of useable signals that
can be recorded in a chronically implanted individual. Another
major problem of chronically implanted MEAs is micro-motion,
which causes the formation of scar tissue, leading to a decrease in
the quality of recordings over time (Williams et al., 2007; Ersen
et al,, 2015). Current materials research is focusing on changing
various properties affecting the stiffness of the microelectrode, in
the hope that scar tissue formation caused by micro-motion will
be minimized (De Faveri et al., 2014). Obien et al. (2015) provide
a comprehensive review of the different types of MEAs currently
in use. The viability of MEAs in clinical use may ultimately
depend upon further advances in materials research (McCarthy
etal., 2011; Tooker et al., 2012; Felix et al., 2013; De Faveri et al,,
2014).
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A potential solution for MEA signal stability would be to
implement BCIs that utilize somewhat lower-fidelity neural
signals. One signal that can be acquired by MEAs is the local
field potential (LFP). The LFP represents the summation of active
cellular processes nearest the site of each microelectrode. While
the general process of analysing LFPs is similar to analysing spike
data, the computational stage and filtering is somewhat different
(Figure 2), and some delay is inherent due to the latency with
which changes in spectral power occur and can be measured.
Despite these limitations of LFPs, the advantages of increased
recording stability may outweigh the loss in accuracy.

A combination of lower-fidelity LFP recordings and spike
recordings might also be desirable. It is possible to generate
predictions of the imagined single-joint movements in a
tetraplegic individual by decoding the joint trajectory using the
LFP frequency signals and multi-unit spike activity similarly
to those predicted by decoding single-unit activity (Ajiboye
et al., 2012). Recent work by Hall et al. (2014) indicates that
it is possible to estimate single unit firing rates using the slow
potentials from LFPs derived at several cortical locations. If this
method can be applied to estimate the single unit firing rate of
a single unit, without the need for first gathering spike data to
calibrate the estimation, it could lead to the development of a
BCI with sufficient longevity that still offers good spatiotemporal
resolution. However, it is important to note that the filters used
to perform the necessary calculations to deconvolve the firing
rate of a single neuron from the low frequency LFP signals
using current methods require prior knowledge of spike train
information from multiple neurons. Furthermore, when using
single-unit activity decoded from LFPs, there is an additional
step of transforming the data during which accuracy could be
lost. Despite these limitations, the method described by Hall
et al. (2014) offers the added benefit of allowing accurate single
unit firing rate predictions over the course of several weeks,
which is an improvement on intra-day instabilities in decoding
from single-unit activity itself (Perge et al., 2013). In this way,
using LFP decoders in conjunction with single- and multi-
unit activity may be a key step in implementing long-term
implants.

Electrocorticography Grids

ECoG consists of a mesh or grid of electrodes distributed across
the cortical surface that can be placed either subdurally or
epidurally. This technique can detect the LFPs from the cortical
surface at specific locations, but does not have the resolution to
detect individual spikes. As less invasive interface approaches are
used, the focality of the recorded signal necessarily is degraded.
What ECoG lacks in spatiotemporal precision with respect to
individual spiking profiles, it makes up for in patency. ECoG
has shown resilience in long-term recordings in human patients
implanted for up to 7.1 years (King-Stephens et al., 2015).
In addition, ECoG has the ability to expand the extent of
spatial coverage relative to MEAs. For example, signals can be
detected and decoded simultaneously from M1, PMd, and S1.
Additionally, using this method, it is possible to detect not only
recordings from gyrus, but also from the sulcal wall (Yanagisawa
et al., 2009), albeit via a more invasive process.

In humans, most studies investigating the use of ECoG
for BCI applications have used clinical electrodes implanted
in epilepsy patients for localization of epileptic foci with an
electrode size on the order of a few millimeters and an
interelectrode distance of approximately 1 c¢cm. In particular,
movement-related spectral power changes have been shown to
occur not only during overt movements of skeletal musculature,
but also during imagined movements (Leuthardt et al., 2004),
indicating that these spectral power changes may be useful
in motor-impaired patients who are unable to perform overt
movements. Furthermore, several studies have demonstrated
that functionally motor-intact human patients can modulate the
spectral power of ECoG signals to achieve on-line control of
a computer cursor (Leuthardt et al., 2004; Wilson et al., 2006;
Felton et al., 2007; Schalk et al., 2008).

ECoG has also been used to implement BCI devices in motor-
impaired patients. A study in a hemiparetic patient demonstrated
that it is possible to use ECoG to control a prosthetic arm
using recordings from sensorimotor cortex (Yanagisawa et al,,
2011). Additionally, the use of ECoG signals for control of a
BCI system with three degrees-of-freedom based upon motor
imagery of movements at multiple independent joints has been
demonstrated in a quadriplegic patient with good signal quality
for durations up to 1 month (Wang et al., 2013). While on-line
BCI control in human patients with ECoG has been limited to
short durations, with relatively large electrode sizes, arrays with
sub-millimeter electrode sizes have been proposed as a means
to obtain signals with increased spatial specificity. These micro-
scale arrays have been utilized for online BCI control experiments
in NHPs (Leuthardt et al., 2009; Rouse et al., 2013). Importantly,
these studies utilized chronic epidural recordings, demonstrating
the stability of ECoG signals as well as the potential to implant
ECoG BCI systems on the surface of the dura, which would
reduce the risks of infection due to isolating the implant from
the subdural space.

While closed-loop BCI systems generally have used changes in
spectral power associated with imagined movements of a single
joint in humans or high gamma power in arbitrary electrodes in
NHPs, a more natural control algorithm may be to use signals
decoded from natural movements or behaviors. The potential
for this type of BCI using ECoG has been demonstrated by
studies that have used ECoG signals to decode 2D movement
directions in rats (Slutzky et al., 2011) and NHPs (Flint et al,,
2012) and to continuously decode movement kinematics of 2D
(Flint et al., 2012; Marathe and Taylor, 2013) and 3D arm
movements in NHPs (Chao et al., 2010). Along with animal
models, ECoG recordings from human epilepsy patients have
been used to decode information about voluntary movements.
ECoG recordings have been used to classify movement directions
of arm and hand movements (Reddy et al., 2009; Wang et al.,
2012; Chestek et al., 2013). Similarly, it is possible to decode
continuous finger flexion/extension (Chestek et al., 2013) and
2D arm and hand trajectories using ECoG with modest accuracy
(Schalk et al., 2007; Pistohl et al., 2008; Sanchez et al., 2008;
Kellis et al., 2012), as well as move a cursor to an onscreen
target using full neural control with no trajectory decoding
(Kellis et al., 2012). Flint et al. (2014) extended these findings
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FIGURE 2 | Schematic of possible differences in analysing point-processes and waveforms when using externally interfaced motor prosthetics. Note
that this flow may change depending on the specific device, but is designed to provide a broad overview for comparison. In the diagram, the green ellipse represents
data that has been recorded and amplified from the neural source. Blue rectangles are stages along the processing pathway that are typical for many devices. Red
hexagons represent potential rate-limiting steps in determining the latency of the Brain Computer Interface (BCI) response to immediate internal changes in patterns
of neural activity.

to show that it is possible not only to determine trajectory, but
kinetics for use in functional electrical stimulation as well using
ECoG (Flint et al., 2014). There are also preliminary indications
that ECoG in patients with stroke and epilepsy can be used to
predict three degrees-of-freedom in arm trajectory during motor
imagery (Nakanishi et al., 2013). Other recent experiments have
used high-density ECoG placed over specific areas to yield high
accuracy decoding. Placement over the speech cortices yielded
accurate prediction of vowel acoustics during speech (Bouchard
and Chang, 2014), and placement over the hand knob area
in sensorimotor cortex resulted in decoding of hand gesturing

(Bleichner et al., 2014), with high frequency signals (>65 Hz)
showing the most accurate results. In general, it should be noted
that the higher frequency signals tend to produce more accurate
results, presumably in part because there is a shorter latency
between intent and decoding/feedback.

Electroencephalography Caps

EEG is the least invasive technique, but also provides signals
with the broadest spatiotemporal coverage of the cortex. Similar
to ECoG, EEG detects general electric fields that are a sum
of the electrical activity for a given region. However, as the
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EEG signal detection is somewhat distant to the site of interest
(e.g., the precentral gyrus) there is an inherent limitation to
spatial and spectral resolution during signal acquisition. Because
the voltage from a dipole falls off with the inverse of the square of
the distance from the dipole, the extra distance between neural
sources in the cortex and EEG electrodes causes a summation
over a wider range of cortex (Cooper et al., 1965). The spectral
resolution limitation is due primarily to the fact that higher
frequency signals, which are more focal, tend to be averaged
out by the low spatial resolution. In addition, high frequency
activity in general is lower in amplitude than low frequency
activity, and can be filtered out from the inherent dampening
of the bone and tissue that it must travel through Cooper et al.
(1965) and Pfurtscheller and Cooper (1975). Finally, EEG signals
are also susceptible to contamination from electromyographical
(EMG) artifacts or eye blinks (Cooper et al., 1965; Wolpaw
and McFarland, 2004). Due to these complications, trajectory
predictions using EEG are generally not as accurate as those using
MEA recording or ECoG.

Despite these limitations, EEG provides an excellent method
for obtaining neural information from patients in a clinical
setting without the need for surgery. EEG is also promising for
use in acute settings that could be associated with rehabilitation
and behavioral recovery, since it is non-invasive in nature. One
of the hopes for EEG is that by using proper placement of a
sufficient number of leads and a significant amount of prior data
in healthy patients, it will be possible to use frequency signatures
from different areas to overcome some of the spatiotemporal
problems listed previously. As noted previously, EEG has the
advantage of broad spatial coverage in recordings. It may be
possible to turn this broad spatial coverage into an advantage
in resolving the origin of activity in the brain. There is a large
body of work in EEG source imaging that focuses on estimating
the location of current sources for scalp measurements by
solving the so-called static electromagnetic inverse problem.
This is done using the collection of scalp measurements as
well as a set of reasonable a priori constraints based on the
assumed or measured physiology of the brain to determine
the most likely origin of the current source or sources. As
Michel et al. (2004) detail in their review of such techniques,
such estimates depend on a number of factors, including but
not limited to the number and position of electrodes on the
scalp, the solution algorithm used to solve the inverse problem,
and the integration of MRI data to serve as a prior. Recent
studies demonstrate that it is possible to incorporate such source
estimation techniques to EEG recordings for potential use in
future BCI applications (Aihara et al., 2012; Yoshimura et al.,
2012).

Although a variety of signal analyses have been used for EEG
BCI systems (Blankertz et al., 2004), a more traditional approach
has been to utilize average features of the frequency spectrum
in relation to a motor event. A common strategy is to identify
periods of event-related desynchronization (ERD) as a cue for
some BCI output. ERD itself is a decrease in a pre-defined
spectral frequency band that can have a different physiological
interpretation depending on the context of the task. Controlling
a BCI system with ERD associated with motor movements has

particular relevance to motor-impaired populations. Because
ERD has been shown to occur with imagined in addition to
overt movements, it is applicable as a BCI control signal in
patient populations that are unable to execute motor actions
(Pfurtscheller et al., 1997). The application of EEG ERD-based
BCI systems has been demonstrated in normal controls and
patient populations (Wolpaw et al., 1991; Pfurtscheller et al.,
2003; Blankertz et al, 2004; Wolpaw and McFarland, 2004;
McFarland et al, 2010). While EEG is a powerful tool due
to its ease of use and non-invasiveness, its use in BCI system
development is hampered by the limitations described above. To
date the best performance of an EEG BCI system in control of
extrinsic operations is three degrees-of-freedom, which was only
achieved after months of intensive training (McFarland et al,,
2010).

Although EEG-based BCI that use ERD and event related
synchronization (ERS) in various frequency bands are common,
recent work has aimed at providing a more comprehensive
picture of changes through various power bands through the
duration of a variety of tasks. Depending on the task, and thereby,
the neural circuits involved, different signal features may be
important at different times relative to the event of interest. A
recent study identified EEG features in healthy subjects related
to several stages of motor activities (Ramos-Murguialday and
Birbaumer, 2015). Ideally, when using EEG to control a BCI,
the different components of a movement would have distinct
feature signatures that could be detected. Indeed, in this study
it was noted that there were distinct features during active and
passive proprioception, active intention, and passive involvement
in motor activity. Importantly, these features were significantly
different when performing a BCI task as compared to other
motor tasks, indicating that decoder design must take into
account changes in EEG features depending on the type of
activity involved.

Other less time-sensitive applications than fine motor
movement may lend themselves to BCIs that utilize even
lower frequency signals, sometimes referred to as slow cortical
potentials (SCPs) or movement-related cortical potentials
(MRPs). In these cases accuracy can be added by including pre-
processing steps using a variety of methods to reject false positive
signals. A recent study has demonstrated that it may even be
possible to decode movement intent from delta-band (0.1-4 Hz)
features, showing high accuracy in movement classification
during a sitting-to-standing task in healthy volunteers (Bulea
et al.,, 2014). In fact, BCIs using slow signals have application
even beyond motor tasks, such as allowing communication via a
spelling device for patients with locked-in syndrome (Birbaumer
etal., 1999) or even allowing web-browsing for paralyzed patients
(Bensch et al., 2007). Another recent direction for improving
accuracy is seen in the development of the brain/neuronal
computer interface (BNCI). The recent distinction between
BNCI and BCI devices draws on the fact that the BNCI makes
use of other signals or current sources recorded from the body
that are not located directly in the brain. Soekadar et al. (2015b)
demonstrated that it is possible to use electrooculography (EOG)
in conjunction with EEG to improve use of a grasping hand
exoskeleton.
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Control of Intrinsic Operations

Some implantable devices operate by modifying the flow
of information or causing modifications in the functional
neural networks of the brain. These devices control what can
be considered intrinsic operations in the brain. Devices in
this category fall into two sets: open-loop and closed-loop
stimulators. In open-loop stimulation, some form of stimulation
is applied to a region of the brain with a frequency that is often
determined using physiological parameters, but not necessarily
correlated to the immediate activity of the brain. Such open-
loop devices deliver a constant stream of current to the site
of interest, as is predominant in deep brain stimulation (DBS),
although recent studies have used closed-loop DBS for treatment
of Parkinson’s Disease (PD), epilepsy, and intention tremors, as
will be noted. There is also interest in the application of open-
loop stimulation in conjunction with BCI therapy; however, in
the scope of this review we will mainly cover closed-loop devices.

Closed-Loop Controlled Intrinsic Operations

By nature of their application in primarily remedying some sort
of functional deficit to patients, most BCIs could be broadly
considered as closed-loop devices by virtue of the feedback a
patient receives, typically visually, from the device when using
it. In this review, we will be more precise with the definition
of closed-loop strategies, and break “closed-loop” into two
subcategories. The first subcategory of closed-loop strategies
incorporates the ongoing activity patterns in individual neurons
or ensembles of neurons to determine when an electrical stimulus
will be applied in another location. Thus, intrinsic control can
facilitate the flow of information from one region of the brain
to another (Figure 3). These strategies are not driven by patient
recognition of some extrinsic goal, but rather form a completely
internal closed-loop. Feedback from an applied stimulus that
controls intrinsic operations is typically less overt, as electrical
stimulation is generally at subthreshold levels for generating
sensation or movement, and measures of functional outcome
are harder to ascertain on a trial-by-trial basis. In contrast, such
feedback results in gradual changes in network connectivity,
cognitive function or memory. This feature of intrinsic control
provides an additional challenge since the network changes
are thought to rely on Hebbian learning mechanisms, as are
discussed below. While it is true that at the synapse such a
circuit would comprise a feed-forward system, it is generally the
case that reciprocal anatomical projections exist between cortical
areas (Donoghue and Parham, 1983; Zhang and Deschenes,
1998), leading to bi-directional information flow and thus closing
the loop. Stimulation in this paradigm requires not only a
high-fidelity signal to detect and decode trigger events, but a
highly focal, transient stimulus delivery. This is relatively simple
when using MEAs to deliver the stimulus, but becomes more
challenging when using less focal types of stimulation such as
epidural stimulators or transcranial magnetic stimulation that
stimulate relatively large volumes of tissue.

In PD, it is thought that DBS can improve motor functioning
by disrupting abnormal activity. To improve upon existing,
open-loop DBS methods, one study in eight PD patients used
frequency characteristics of LFPs recorded from the subthalamic

nucleus (STN) to determine when to stimulate. Since beta
frequencies (13-30 Hz) are thought to correlate with impairment
in PD, stimulating the STN only during periods of high
beta activity provides an adaptive, or closed-loop, approach
to DBS (Little et al., 2013). This adaptive DBS caused a
significant increase in subjects’ neurological scores compared
with continuous or random DBS. A closed-loop BCI to control
intrinsic operations has also been used in epilepsy patients.
In a randomized multicenter double-blinded controlled trial of
191 subjects, ECoG electrodes were used to detect epileptiform
activity in the recorded signal (Heck et al., 2014). Following
detection of epileptiform activity, brief pulses of electrical
stimulation were applied to the seizure focus, an approach known
as responsive focal cortical stimulation (RNS). Subjects receiving
RNS showed a significant reduction in partial-onset seizures after
2 years in the study. In treatment of intention tremors, surface
electrodes recording EMG activity have been used to create a
sort of closed-loop on-demand control system for DBS that may
reduce patient resistance to treatment by stimulation (Yamamoto
etal., 2013).

Aborting pathological activity using feedback-controlled
electrical stimulation is just one application for closed-loop
control of intrinsic operations. Another application is to facilitate
synaptic efficacy of specific neural connections, using the natural
timing of neuronal firing between groups of neurons. This
approach derives its rationale from Hebbian plasticity theory,
which posits that neuronal connections are strengthened when
presynaptic activity is temporally linked with post-synaptic
activity. Because synaptic efficacy changes rely on precise
millisecond by millisecond timing relationships, approaches to
investigate closed-loop control in this context necessarily require
the highest temporal resolution possible. To date, this has
been achieved only with MEAs recording individual neuronal
spikes. Jackson et al. (2006) showed that it is possible to
modulate activity of neurons within the motor cortex based
on a spike-dependent stimulation paradigm. In this model,
monkeys with chronically implanted microelectrodes in two
nearby populations of neurons in the motor cortex were trained
on a torque-tracking task. The two populations were tuned to
different trajectories. However, when one of the microelectrodes
was stimulated based on the spikes recorded from the other
microelectrode, the trajectory tuning became similar between
the two populations. This study suggested that it is possible to
alter existing cortical connections by “linking” two areas together
using closed-loop stimulation. Of added interest is the fact that
these changes persisted even after the closed-loop period ended,
indicating that it was possible to induce long-term changes in
synaptic efficacy using this paradigm.

Extending this idea to a traumatic brain injury model,
Guggenmos et al. (2013) showed that it is possible to restore
a reaching function in rats following damage to motor cortex
by linking the premotor and somatosensory areas using activity-
dependent stimulation (ADS; Guggenmos et al., 2013). In this
study, a focal impact was made over the rat’s caudal forelimb area
in motor cortex, abolishing its ability to perform the reaching
task effectively, largely due to the disruption in somatosensory
motor integration. A recording microelectrode was implanted
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Functional Area 1

thereby restoring some degree of lost functionality.

Damaged Area

OUTPUT
EFFECTOR

FIGURE 3 | Schematic by which internally contained stimulation devices restore lost function resulting from damaged or missing tissue. Before
damage, the area of interest (red circle) and functionally related areas (rectangles) relay information between each other and effectors (solid arrows) of some output
task (yellow star). The majority of information in controlling task output initially comes from the damaged area (thick red arrow), but may also arrive, although to a
lesser extent, from functionally related areas (thin black arrows). Following injury, connections to and from the damaged area are lost (all red elements). The
stimulation device serves as a direct bridge between functional areas, allowing strengthened output (thick green arrows) from those areas to the output effectors and

Functional Area 2

in the spared rostral forelimb area (RFA), which is somewhat
analogous to the primate premotor area. A stimulating electrode,
which was triggered by a wireless, battery-operated, head-
mounted chip, was implanted in the primary somatosensory (S1)
forelimb area. In the ADS paradigm, which ran continuously
24 h a day for up to 28 days, spikes detected in RFA were
used to trigger stimulation in S1 after a brief delay (7.5 ms).
Remarkably, rats in the ADS protocol demonstrated a significant
recovery of functional reaching behavior within a few weeks of
ADS treatment. In conjunction with behavioral improvement,
synaptic potentiation between S1 and RFA increased as well.
Recently, a version of this paradigm has been applied to the rat
cervical spinal cord as well, demonstrating a possible treatment
mechanism for spinal cord injury, although the trigger signal was
EMG activity and not primary CNS activity (McPherson et al.,
2015).

There are still a number of unanswered questions regarding
the effects of ADS in the context of neuronal pathologies. For
example, it is not yet known how long the effects last, or the
duration of the therapeutic window. Nevertheless, such a strategy
of changing synaptic efficacy is an attractive option for use in a
temporary implant because it raises the possibility of a removable
or degradable device that only needs to function transiently.
Thus, the simplicity of use of the device would mean a one-time
surgical operation for patients, with the possibility of having a
degradable or removable device that could then either be left
in situ or explanted after treatment. In addition, aside from
setting the thresholds for spike detection, there are a minimum

of decoding algorithms that must be customized for individual
patients, increasing the feasibility of such an approach in a
clinical setting.

Other devices that control intrinsic operations have utilized a
different approach. These devices restore cognitive function by
replacing circuitry of the brain that is missing or malfunctioning
(Berger et al., 2011, 2012; Hampson et al., 2012; Opris et al.,
2012; Bonifazi et al., 2013). Berger’s group demonstrated that it is
possible to improve rat memory scores in a delayed non-match-
to-sample task by implanting a device to translate spike trains
detected in CA3 into stimulus trains in CA1 (Berger et al., 2012).
Presumably, this closed-loop stimulation acts as a proxy for lost
hippocampal function, modifying the spatiotemporal coding of
the neural spike information in a similar way to the intact brain.

A major remaining challenge for these types of devices is that
in order to increase the degree of complexity of information
transmitted, it is necessary to increase the number of inputs.
This problem presents a similar challenge as in the externally
operating device case in that there is a density limit to the
number of electrode sites that can record from a given area
at a particular time. As the number of inputs increases, the
computational difficulty increases as well. Put in context, a
2004 study by Izhikevich that modeled 100,000 neurons with
8.5 million connections between them took roughly 60 s of
computation time for every 1 s of simulation time (Izhikevich
et al., 2004). While technology has improved substantially since
2004, it is easy to imagine that as the number of neurons increases
the computational difficulty will increase quickly, too. Thus, the
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complexity of the cognitive task being recovered will most likely
determine the feasibility of employing such techniques.

As mentioned previously, a second strategy exists when
incorporating closed-loop strategies for control of intrinsic
operations. These types of devices are commonly classified as
“restorative” BCI, as they are primarily used in rehabilitation
treatments as a means to train patients to overcome some form
of impairment. While they technically do affect some element
extrinsic to the patient, the goal is to cause lasting intrinsic
plastic changes that remedy deficits and eventually allow the
patient to no longer need the use of the BCIL thus they are
classified here with the other intrinsic devices. For example, a BCI
designed to reward desynchronization of particular oscillatory
rhythms in stroke patients with corresponding proprioceptive
feedback by movement of an orthosis demonstrated a clinically
meaningful change in assessment scores of patients receiving
the orthotic treatment against controls (Ramos-Murguialday
et al., 2013). This type of training BCI has been the subject
of much interest in the field. One direction is the adjunctive
use of non-invasive electrical stimulation with training BCI to
enhance learning by amplifying the ERD signal using anodal
transcranial direct current stimulation (Soekadar et al., 2014;
Kasashima-Shindo et al., 2015; Soekadar et al., 2015a). Another
avenue is the use of graded velocity feedback in response to
the relative strength of the ERD signal to improve learning
by providing improved visual and proprioceptive feedback
during BCI-triggered orthotic movement (Soekadar et al., 2011).
In this study, even stroke patients demonstrated improved
modulation of ipsilesional activity; a similar study demonstrated
evidence that this paradigm could lead to new voluntary EMG
activity in hemiparetic patients (Shindo et al, 2011). There
are a few case studies involving BCI for modulating intrinsic
operations as well. One study used visual feedback for the
control of excessive levels of beta band activity detected by
EEG, providing some evidence that this paradigm could cause
voluntary changes in pathological brain activity and improve
handwriting for a patient suffering chronic writer’s cramps
(Hashimoto et al., 2014). A within-subject withdrawal design in
functional EEG BCI-driven neuromuscular electrical stimulation
showed some restoration of voluntary EMG activity in a paretic
patient where previous rehabilitation treatments had failed
(Mukaino et al., 2014). Methods of non-invasive stimulation
that could tentatively be used with some of the aforementioned
strategies have been proposed, but are still in preliminary
stages (Soekadar et al., 2013; Wilde et al., 2015; Zrenner et al,,
2015).

Evaluating Intrinsic Operation Efficacy

While many of the restorative closed-loop BCI devices have
demonstrated substantial clinical efficacy, one common theme
among closed-loop devices that do not fall under this category
is that they are still farther from clinical application when
compared to their externally interfaced counterparts. This may
be, in part, because the underlying mechanisms of some of
the internally interfaced devices are still not well understood.
For example, in a device attempting to recreate the firing
patterns connecting one region to another, what sort of simulated

pattern would be important to use? Or in the stimulation-
dependent closed-loop system, how does the “linkage” between
the two areas occur? Before the translation of these devices to
a clinical setting, there remains a large amount of investigation
to understand the mechanistic means by which these devices
work. Even in those devices that are closer to widespread clinical
implementation, the neuronal substrates for improved control
and use of BCIs are not entirely understood (Soekadar et al.,
2015a).

A large remaining area of study is to demonstrate specific
features of how these internally interfaced devices affect changes
in network connectivity. For example, a method to measure
the putative changes in anatomical connectivity between two
artificially linked areas would be to look at the number of
projections from one area to the other in animals with and
without the device post mortem; this provides a statistical
means for comparison between groups, but is limited in the
description of functional connectivity that may take place.
Alternatively, means of visualizing connections in the brain
such as diffusion tensor imaging has been used in rats in vivo
(Laitinen et al., 2015), and could be employed for such a within-
subject comparison study; however, it can be cumbersome to
use such methods to map animals pre- and post- implantation.
Additionally, implanted devices can obscure the accuracy of such
data collection methods.

Rather than tracking changes in anatomical connectivity, it
may be easier to track changes in effective connectivity directly
using electrophysiological means. It is common practice to use
methods such as finding the cross correlation over a sliding
window to determine the average cross correlation for spike
train firing in two areas in in vitro studies (Perkel et al., 1967).
This method has also been used in vivo (Murphy et al., 1985),
and has recently been used in conjunction with delayed mutual
information to provide insight to the direction of connections as
well as the specific patterns of connectivity of individual neurons
(Taghva et al., 2012; Endo et al., 2015). Using statistical analyses
such as cross correlation and time delayed mutual information
may allow for the quantification of these effective changes over
time in BCI models.

Eventually, these methods could pinpoint the time scale over
which permanent changes take place, or help to identify other
parameters necessary for the optimization of such devices. For
example, for the closed-loop system used by Guggenmos et al.
(2013) to be generalized to multiple areas of the brain, it will
be necessary to test whether the delay between trigger and
stimulation is a general property of ADS, or if other factors such
as distance and intrinsic connectivity between areas plays a role
as well. In order to test different delay times and how well they
change the effective connectivity between areas, having a good
metric to describe and compare changes will be critical.

CONCLUSION

An ideal high fidelity BCI would both sample and allow
stimulation of precise neural features non-invasively. In reality,
such a combination is unlikely. Nonetheless, current work across
several types of BCIs provides promising results for the clinical
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applicability of these technologies. Despite the positive outlook
for the future of BClIs, several challenges remain before high
fidelity recording and stimulating devices are made available for
common clinical use. For MEA recordings, two major challenges
remain. The first is to improve the patency of chronically
implanted microelectrodes so that they can continue to be
used for recordings for the duration of the patient’s lifespan.
The second challenge is to find reliable recording sites and
decoding algorithms that do not need to be recalibrated on a
daily or weekly basis, and adaptive decoders that would allow for
automatic recalibration as patients learn to use implanted BCIs
more efficiently.

For ECoG and EEG, the challenge is less from a materials
perspective, and more from a computational perspective. The
primary goal remains similar to MEA-based BClIs: it is most
important to find regions from which task-related information
can be reliably decoded and translated into repeatable intent. It
may first be necessary to find a means to identify reliable neural
substrates for BCI learning using MEAs, then demonstrate that
the activity patterns of these substrates can be reliably decoded
using less invasive measures. Emerging methods incorporating
structural and metabolic information into current source
estimates may provide the additional information necessary to
increase decoding accuracy (Aihara et al., 2012). Additionally, as
frequency-domain based decoders improve in accuracy, it will
be important to continue to incorporate signals with greater
numbers of independent features into BCI decoders in order to
improve the ease of adaptation for implanted patients. In ECoG,
this could potentially be improved by optimizing location and
spacing.

In terms of decoded output, goal-tuned single units in MEA-
based BCIs have shown great promise for decoding intent in
complex movements. Meanwhile, work involving less-invasive
approaches such as ECoG and EEG continues to improve in
decoding accuracy. The future combination of these lines of work
will be critical for progress towards increased clinical use of
neural prosthetics. In order to demonstrate the complete neural
electrophysiological basis for learned BCI behavior, elements
from all types of recording paradigms may be necessary. Such
an understanding may lead to new therapeutic targets for BCI
devices.

As non-invasive electrical stimulation becomes a more
realistic possibility in restorative devices that use overt, extrinsic
goals for patient rehabilitation, combination stimulation
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