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Abstract
Attention deficit hyperactivity disorder (ADHD) increases 
the risk for concussion or mild traumatic brain injury (mTBI). 
At the same time, recommendations for the management of 
ADHD include participation in sports and other organized 
physical activities, including those that carry an increased 
risk of mTBI. Very little work has been done to determine the 
extent to which untreated ADHD adversely impacts behav-
ioral outcomes of repeated mild concussions. Here, we used 
a perinatal nicotine exposure (PNE) mouse model of ADHD 
combined with a closed-head, repetitive mTBI model. The 
PNE mouse model carries significant construct, face, and 
predictive validity as a preclinical model of ADHD. Two-
month-old PNE and control mice were subjected to closed-
head repetitive mTBI or sham procedure once daily for 5 
days. Object-based attention, novel object recognition 
memory, spatial working memory, and depression-like be-
havior were analyzed 1 day and 2 weeks following repeated 
mTBI. Consistent with our previous reports, mice in the PNE 

group showed significant deficits in object-based attention 
and working memory prior to mTBI. These deficits persisted 
following the repeated mTBI. Repeated mTBI produced a 
transient attention deficit in the control group but did not 
exacerbate the attention deficit that is characteristic of the 
PNE group. Although neither PNE nor repetitive mTBI alone 
influenced immobility in the tail suspension test, when PNE 
mice were subjected to mTBI, there was a transient increase 
in this measurement suggesting a synergistic effect of ADHD 
and mTBI on depression-like behavior. Thus, our data using 
the PNE mouse model suggest that ADHD may be a risk fac-
tor for transient depression following repeated mTBI and 
that repeated mTBI may be a risk factor for transient atten-
tion deficit. © 2021 S. Karger AG, Basel

Introduction

Attention deficit hyperactivity disorder (ADHD) is a 
neurobehavioral disorder that affects 8–10% of children 
[1–3]. It is characterized by attention deficit, hyperactiv-
ity, and impulsivity that can disrupt development or 
function in social, academic, and occupational settings 
[4–6]. As described by the American Psychiatric Associa-
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tion’s Diagnostic and Statistical Manual, Fifth edition 
(DSM-5), the symptoms, which can range from mild to 
severe, begin before age 12 but can last through adoles-
cence and into adulthood [7].

While pyschostimulants methylphenidate (MPH) or 
amphetamines remain the first line of ADHD treatment 
[8–10], there is a growing appreciation for the beneficial 
role of nonpharmacological therapies. These include the 
use of physical activities such as exercise and sports [11–
13]. A recent meta-analysis of 30 studies showed that 
moderate to intense aerobic exercise can be effective in the 
management of the cognitive and behavioral symptoms of 
ADHD [14]. However, physical activity that includes par-
ticipation in contact sports increases the likelihood of 
concussion or mild traumatic brain injury (mTBI). In fact, 
regular participation in contact sports, particularly Amer-
ican football, rugby, hockey, soccer, and basketball, carries 
a high risk for repetitive concussion [15].

There is strong evidence to suggest that athletes with 
ADHD have a significantly higher risk of mTBI com-
pared to non-ADHD athletes [16–20]. The risk of repeti-
tive concussion is also higher in athletes with ADHD [19]. 
Furthermore, there is evidence that the symptoms of con-
cussion, particularly verbal memory impairment [21], fa-
tigue, and poor concentration [18], are worse in student 
athletes with ADHD compared to athletes without ADHD 
who sustain an mTBI. However, there are conflicting data 
on the impact of ADHD on mTBI outcomes, as baseline 
symptoms may mimic some of the symptoms of mTBI 
[19, 22, 23]. In any event, the degree to which untreated 
ADHD impacts the behavioral outcomes following mTBI 
is only now beginning to be examined [22, 24–26]. A re-
cent meta-analysis reported that only 2 small studies to 
date have reported statistically significant links between 
ADHD and poorer clinical outcomes following mTBI 
[26]. Other studies found no such association leading to 
the conclusion that the exact association between ADHD 
and mTBI outcomes was unclear, in large part due to the 
underpowering of the available studies [9].

To address this gap in knowledge, we used a mouse 
model to determine the extent to which repetitive mTBI 
produces significant changes in behavioral outcomes in a 
perinatal nicotine exposure (PNE) mouse model. We used 
the PNE mouse model because it displays neuroanatomi-
cal, neurochemical, and behavioral phenotypes consistent 
with ADHD, and the behaviors in this mouse model re-
spond to treatment with the classic stimulant drug MPH 
[27–30]. This model enabled us to examine whether 
closed-head repetitive mTBI exacerbates the attention 
and working memory deficits present in the PNE mouse 

model or produces deficits in novel object recognition 
memory or depression-like behaviors that are associated 
with traumatic brain injury [31–36] but not with ADHD.

Materials and Methods

PNE Model
C57BL/6 mice were purchased from Charles River Laboratories 

(Kingston, NY) and housed in the Florida State University Labora-
tory Animal Resources facility. The facility is a temperature- and 
humidity-controlled environment maintained on a 12-h light-dark 
cycle (lights off at 7:00 a.m. and on at 7:00 p.m.). The mice had food 
and water available ad libitum. Breeding age (8–12 weeks old) female 
mice were randomly assigned to one of the 3 experimental groups 
based on the type of drinking water supplied: PNE group was pro-
vided with water containing nicotine (100 μg/mL (−)-nicotine; Sig-
ma Chemical Co., St. Louis, MO; Cat# N3876) and 2% saccharin 
(Alfa Aesar, Heysham, UK; Cat# A15530); the saccharin group was 
provided with water containing 2% saccharin (Fig. 1a). To control 
for the potential effects of saccharin, a third group of mice received 
plain water [27–29, 37]. After 3 weeks, female mice in each group 
were bred with drug-naïve male mice. Based on the presence of a 
vaginal plug, the day of successful mating was designated embry-
onic day 0 (E0) and the day of birth postnatal day 0 (P0). The litter 
size was standardized to contain 6–8 offspring on the day of birth. 
The 3 types of water were continued until the pups were weaned on 
P21. Throughout pregnancy, each female mouse was singly housed. 
Upon weaning, same sex offspring were housed 2–4 per cage.

Closed-Head Repetitive mTBI
The procedure was performed on male mice from the PNE and 

control groups at approximately P60 (Fig. 1b). An electromagnet-
ically driven stereotaxic device designed to control the site, depth, 
and velocity of impact was used (Impact One Stereotaxic Impac-
tor; Leica, Buffalo Grove, IL). Blunt force impact was achieved by 
enclosing the tip of the metal piston in a customized rubber cap (9 
mm in diameter) [38, 39]. A custom-made foam platform was used 
to position the mice during impact. The rubber cap on the metal 
piston and the foam platform helped mimic the concussion and 
head rotation in humans. Anesthesia (2.5% isoflurane) was main-
tained throughout the procedure using a nose cone. The center of 
the impactor was positioned approximately 1 mm anterior to the 
bregma and 4 mm lateral to the longitiudinal midline [38]. The 
depth of the impact was adjusted to 3 mm from the surface of the 
skin. The impact occurred at 5 m/s with a dwell time of 100 ms. To 
control for the possible effects of anesthesia [40, 41], a parallel set 
of sham mice which received the same anesthesia were positioned 
in the stereotaxic frame, but were not subjected to mTBI. After 
impact (or sham procedure), the mice were placed on a heating pad 
until mobile and then returned to the home cage. The procedure 
was repeated once daily for up to 5 consecutive days.

Behavioral Tests
Recognition memory was analyzed using the novel object rec-

ognition (NOR) test and spatial working memory using the Y-
maze. Attention was assessed using an object-based attention 
(OBA) test, while animals were monitored for depression-like be-
havior using the tail suspension test (TST). At approximately P60, 
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each mouse was handled by the experimenter for 5 min per day 
every day for 3 days so that the mouse became familiar with the 
process of being picked up and handled by the experimenter. The 
sequence of these behavioral assays was designed to minimize the 
potential impact of repeated testing. They were divided into 2 
groups. Group 1 underwent Y-maze and OBA test, whereas group 
2 underwent NOR and TST. The tests were performed during the 
lights-off period under dim lighting. Mouse behavior was recorded 
using a low-light video camera. The mice were habituated to the 
testing room for 30 min before the behavior analyses began. Upon 
completion of the tests, the mice were randomly assigned to mTBI 
or sham groups. Following the mTBI or sham procedure, within 
each of these 2 groups, the mice were divided again into 2 groups: 
group 1 underwent Y-maze and OBA test, whereas group 2 under-
went TST and NOR. Y-maze assay and TST were performed 1 day 
after the final mTBI or sham procedure (designated as day 1). The 
OBA and NOR tests began on day 2 following the final mTBI or 
sham but were completed on day 4. Two weeks after the first round, 
a second round of behavioral analysis began. Y-maze, OBA, and 
TST but not NOR test were performed during the second round.

Novel Object Recognition (NOR)
The assay consisted of 2 days of habituation followed by a test 

session on the third day [28–30]. On days 1 and 2, the mice were 
individually placed in the test chamber (32 × 28 × 30 cm) for 20 
min for habituation to the chamber. On day 3, the mice were re-

turned to the same chamber to explore 2 identical objects: an un-
opened and unmarked can of food (3.14 × 3.6 × 11 cm) or a Lego 
object (6.4 × 6.4 × 11 cm). Time spent exploring the object placed 
on the left versus right hand side, as well as total time spent explor-
ing the 2 objects, was recorded using an overhead video camera. 
These data were used to evaluate object or side bias. A counter-
balance design was used to address potential bias [29]. Following 
this step, the mouse was returned to its home cage for 10 min. The 
mouse was reintroduced to the same chamber, which now con-
tained one of the 2 objects it had explored earlier (the familiar ob-
ject) and an object to which the mouse had not been exposed pre-
viously (the novel object). The mouse explored these 2 objects for 
5 min, and its activity was recorded. An investigator blinded to the 
identity of the mouse analyzed the video recordings. The novel 
object recognition index was calculated using the formula: time 
spent with the novel object/the time spent with both the objects 
(novel object + familiar object) × 100.

Spatial Working Memory (Y-Maze)
A Y-maze was used to evaluate spatial working memory [28, 29, 

37]. Unique visual cues were placed on the exterior of the walls of 
each of the 3 arms of the Y-maze to facilitate recognition of each arm 
as unique by the mouse. The mouse was placed at the center of the 
Y-maze to begin a 6-min trial, and its behavior was recorded using 
an overhead video camera. An investigator blinded to the identity 
of the mouse analyzed the video recordings to calculate the number 

Behavioral analyses

Y-maze, OBA, NOR and TST Day 1
Y-maze

/TST

Day 14
Y-maze

/TST

Day 4
OBA
/NOR

Day 17
OBA

Pre-repetitive mTBI Sham/repetitive mTBI Post-repetitive mTBI

c

Unilateral closed head repetitive mTBI

Parameters:
•   Anesthesia: Isoflurane 2.5%
•   Site: 1 mm anterior to bregma, and 4 mm lateral to the longitudinal midline
•   Depth: 3 mm from the surface of the skin
•   velocity of impact: 5 m/s with a dwell time of 100 ms

Control

PNE

PNE mouse model

Parameters:
•   Exposure period: Beginning before conception,through pregnancy and
    weaning
•   Control: Plain drinking water or drinking water containing saccharin
•   PNE: Drinking water containing nicotine + saccharina b

Fig. 1. An outline of the experimental design. Female mice were 
exposed to plain drinking water and drinking water containing 
saccharin or nicotine plus saccharin beginning 3 weeks before con-
ception, throughout pregnancy, and until the offspring were 
weaned. a The mice exposed to plain drinking water and saccharin 
were combined into a control group, and the mice exposed to nic-
otine plus saccharin were the PNE group. b At approximately 60 

days of age, the mice in the 2 groups were subjected to unilateral 
closed-head mTBI or sham procedure daily for 5 consecutive days. 
c The following behavioral assays were performed prior to and on 
2 occasions following the mTBI or sham procedure: Y-maze test, 
object-based attention (OBA) test, novel object recognition (NOR) 
test, and tail suspension test (TST). PNE, perinatally nicotine ex-
posed; mTBI, mild traumatic brain injury.

D
ow

nl
oa

de
d 

by
: P

. B
hi

de
 -

 5
61

88
F

lo
rid

a 
S

ta
te

 U
ni

ve
rs

ity
   

   
   

   
   

   
   

   
   

   
 

34
.1

95
.8

8.
23

0 
- 

4/
14

/2
02

1 
1:

18
:3

7 
P

M

Obtained by Rise for Animals.
Uploaded to Animal Research Laboratory Overview (ARLO) on 04/03/2024



Zhang/Levenson/Salazar/McCarthy/
Biederman/Zafonte/Bhide

Dev Neurosci4
DOI: 10.1159/000515198

of entries into each arm and the sequence of arm entries. An arm 
entry was considered to have occurred when all 4 limbs of the mouse 
entered an arm. A “spontaneous alternation” is defined as a set of 3 
consecutive arm choices without a repeated entry (e.g., ABC, BCA, 
and CAB). A spontaneous alternation score was calculated using the 
formula: number of alternations/(number of entries − 2) × 100.

Object-Based Attention (OBA)
The assay consisted of 2 days of habituation, followed by a test-

ing session on day 3. The test apparatus consisted of an exploration 
chamber (40 × 40 × 25 cm) and a testing chamber (40 × 20 × 25 cm) 
separated by a sliding door [28, 29, 42, 43]. On day 1 (habituation), 
the mouse was habituated to the empty apparatus. On day 2 (ha-
bituation), the mouse was habituated to 5 objects, each made of the 
same wooden material, of the same size, but different shapes, in the 
training chamber for 5 min. Next, on the same day, the mouse ex-
plored 2 of these objects selected randomly, in the test chamber for 
5 min. Day 3 began with an additional shorter habituation period 
(3 min in each chamber), followed immediately by exploration of 
the 5 objects used on day 2 in the training chamber for 3 min. Fol-
lowing a 10-s interval, the door separating the chambers was 
opened allowing the mouse to enter the test chamber and explore 
2 objects, one of which was a familiar object that was selected ran-
domly from the 5 objects used in the training chamber. The second 
object was a “novel” object to which the mouse had never been ex-
posed. The familiar object was placed along the wall of the test 
chamber in a position analogous to its original position in the train-
ing chamber, while the novel object was placed near the wall op-
posite. The behavior of the mouse was recorded with an overhead 
video camera for 3 min. An investigator blinded to the experimen-
tal conditions analyzed the video recordings to calculate the length 
of time spent with each of the 2 objects (novel and familiar). A rec-
ognition index was calculated and expressed as percentage using 
the formula: TN/(TF + TN) × 100, where TF and TN represent the 
time spent during the test session exploring the familiar and the 
novel objects, respectively. We included in the analysis only those 
mice that spent at least 18 s with both objects in the test chamber, 
to minimize variability in the data.

Tail Suspension Test (TST)
This is a test of depression-like behavior in rodents [44, 45]. 

The test apparatus consisted of a custom-built rectangular box 
(opaque Plexiglass, 39 cm length × 13 cm width × 60 cm height) 
with a metal suspension rod. The mouse was secured using adhe-
sive tape (TimeMed Labeling Systems, Inc, Burr Ridge, IL, 1.9 cm 
width) to the rod by its tail and suspended upside down by its tail 
for a period of 6 min. The tail was threaded through polycarbonate 
tubing (9.68 cm length × 1.1 mm diameter) to prevent the mouse 
from climbing its tail during the test. During suspension, the ap-
proximate distance between the mouse’s nose and the bench top 
was 25 cm. The test is based on the observation that mice will ex-
hibit bouts of mobility and immobility in a futile attempt to escape 
the stress of tail suspension. Mouse behavior was video recorded 
throughout the 6-min test period. A mouse was considered immo-
bile when it hung passively and completely motionless. Duration 
of immobility was calculated from the video recordings.

Statistical Analysis
Three-way ANOVA with repeated measures in 1 factor was 

used to test the main effects of repetitive mTBI, perinatal treatment, 

and time after mTBI and the interaction between these factors. For 
statistical comparison, control mice with access to plain drinking 
water and controls with access to saccharin were combined into a 
single group because, consistent with our previous work [27–29], 
there were no significant behavioral differences between these 2 
groups. When a significant main effect or interaction (p < 0.05) was 
found by ANOVA, the Bonferroni multiple comparison post hoc 
test was performed. In all cases, a p value of <0.05 was considered 
statistically significant. Prism 9.0 Software (GraphPad Prism 9.0 
Software Inc., San Diego, CA) was used for the statistical analyses.

Results

Baseline Behavioral Analyses
We examined the effects of perinatal treatment on spa-

tial working memory, object-based attention, novel object 
recognition, and learned helplessness (TST) to establish a 
baseline for these phenotypes prior to mTBI. We found that 
PNE produced significant deficits in spatial working mem-
ory (F(2, 30) = 21.75, p < 0.0001) and object-based attention 
(F(2, 35) = 32.41, p < 0.0001). However, PNE did not produce 
a significant deficit in novel object recognition (F(2, 26) = 
0.1263; p > 0.05) and did not increase immobility time in 
the TST for depression-like behavior (one-way ANOVA; 
F(2, 32) = 0.1934; p > 0.05). The same behavioral tests were 
performed again after repeated mTBI or sham procedure.

Spatial Working Memory
Use of the Y-maze and a repeated measure 3-way 

ANOVA to evaluate spontaneous alternation as a mea-
sure of spatial working memory showed that there was a 
significant main effect of PNE (p < 0.0001). Post hoc com-
parisons showed that PNE produced a significant impair-
ment in working memory (p < 0.001; Fig. 2a; Table 1). 
However, there was no significant main effect of mTBI  
(p > 0.05). Furthermore, there was neither the main effect 
of time after mTBI (p > 0.05) nor were the significant in-
teractions between mTBI, perinatal nicotine treatment, 
or time after mTBI (p > 0.05; Table 1).

Object-Based Attention (OBA)
A repeated measure 3-way ANOVA showed signifi-

cant main effects of mTBI and perinatal nicotine treat-
ment (p < 0.0001) in the object-based attention test. The 
main effect of time after mTBI was not significant (p > 
0.05). All interactions among the 3 factors were signifi-
cant (p < 0.05). Post hoc comparisons showed significant 
differences between control sham and mTBI groups on 
day 4 and control sham and PNE sham groups on days 4 
and 17 (p < 0.0001; Fig. 2b; Table 1).
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Novel Object Recognition (NOR)
Two-way ANOVA showed that there were no signifi-

cant effects of perinatal nicotine treatment (F(1, 25) = 
0.7148; p > 0.05), mTBI (F(1, 25) = 0.02567; p > 0.05), or 
perinatal treatment × mTBI interactions (F(1, 25) = 0.5118; 
p > 0.05) on recognition memory as measured in the NOR 
test (Fig. 2c).

Tail Suspension Test (TST)
A repeated measure 3-way ANOVA showed a sig-

nificant main effect of mTBI (p < 0.05) in the TST for 
depression-like behavior. There were no significant 
main effects of PNE treatment (p > 0.05) or time after 
mTBI (p > 0.05). There was, however, a significant in-
teraction between mTBI and time after mTBI (p < 0.05) 
as well as between PNE treatment, mTBI, and time after 
mTBI (p < 0.05). Post hoc comparisons showed signifi-

cant differences between the sham PNE group and mT-
BI-PNE groups on day 1 after mTBI (p < 0.05; Fig. 2d; 
Table 1).

Discussion

We examined the effects of mTBI on ADHD-like be-
haviors using the PNE mouse model of ADHD because it 
shows neuroanatomical, neurochemical, and behavioral 
characteristics consistent with ADHD. For example, vol-
ume of the cingulate cortex is reduced in the PNE mice 
[27] as well as in human subjects with untreated ADHD 
[46]. The PNE mice show significant reductions in frontal 
cortical dopamine content [27, 30] and exhibit locomotor 
hyperactivity, attention deficit, and motor impulsivity 
[27–30], all of which are consistent with ADHD. Further-

100

80

60

40

20

0
1 14 1 14

%
 sp

on
ta

ne
ou

s a
lte

rn
at

io
n

m
ea

n 
± 

SE
M

Control PNE

Days post mTBI

80

60

40

20

0

D
isc

rim
in

at
io

n 
in

de
x, 

%
m

ea
n 

± 
SE

M

Control PNE

100

80

60

40

20

0
4 17 4 17

%
 re

co
gn

iti
on

 in
de

x
m

ea
n 

± 
SE

M

Control PNE

Days post mTBI

Spatial working memory Object based attention

****

300

240

180

120

60

0
1 14 1 14

Im
m

ob
ili

ty
 ti

m
e,

 s
m

ea
n 

± 
SE

M

Control PNE

Days post mTBIDays post mTBI

Novel object recognition Depression-like behavior

**■ Sham  ■ mTBI

a b

c d

Fig. 2. Analysis of spatial working memory (a), object-based attention (b), recognition memory (c), and depres-
sion-like behavior (d) in control and PNE mice following repeated mTBI or sham procedure. Among the behav-
iors analyzed, there was a significant decrease in recognition index in the control group 4 days following repeat-
ed mTBI compared to the sham procedure (b) and a significant increase in immobility in the PNE group 1 day 
after repeated mTBI compared to the sham procedure (d). Bonferroni multiple comparison test following two-
way ANOVA. **p < 0.01; ****p < 0.001. PNE, perinatally nicotine exposed; mTBI, mild traumatic brain injury. 
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Y-maze

ANOVA F (DFn, DFd)
mTBI F (1, 29) = 0.1619
Perinatal treatment F (1, 29) = 110.90****
Time after mTBI F (1, 29) = 0.0036
mTBI × perinatal treatment F (1, 29) = 0.1875
mTBI × time after mTBI F (1, 29) = 0.3117
Perinatal treatment × time after mTBI F (1, 29) = 0.5792
mTBI × perinatal treatment × time after mTBI F (1, 29) = 0.4006

Bonferroni multiple comparisons test t; DF
Control: sham day 1 versus PNE: sham day 1 5.213; 58.00****
Control: mTBI day 1 versus PNE: mTBI day 1 6.542; 58.00****
Control: sham day 14 versus PNE: sham day 14 5.099; 58.00****
Control: mTBI day 14 versus PNE: mTBI day 14 5.033; 58.00****

Object-based attention test

ANOVA F (DFn, DFd)
mTBI F (1, 34) = 33.52****
Perinatal treatment F (1, 34) = 83.77****
Time after mTBI F (1, 34) = 2.515
mTBI × perinatal treatment F (1, 34) = 10.55**
mTBI × time after mTBI F (1, 34) = 6.907*
Perinatal treatment × time after mTBI F (1, 34) = 5.247*
mTBI × perinatal treatment × time after mTBI F (1, 34) = 4.594*

Bonferroni multiple comparisons test t; DF
Control: sham day 4 versus PNE: sham day 4 6.067; 68.00****
Control: sham day 4 versus control: mTBI day 4 7.634 68.00****
Control: mTBI day 4 versus control: mTBI day 17 4.953 34.00***
Control: mTBI day 17 versus PNE: mTBI day 17 5.511 68.00****
Control: sham day 17 versus PNE: sham day 17 6.200 68.00****

Tail suspension test

ANOVA F (DFn, DFd)
mTBI F (1, 31) = 4.556*
Perinatal treatment F (1, 31) = 0.6626
Time after mTBI F (1, 31) = 0.00008
mTBI × perinatal treatment F (1, 31) = 2.486
mTBI × time after mTBI F (1, 31) = 6.072*
Perinatal treatment × time after mTBI F (1, 31) = 3.358
mTBI × perinatal treatment × time after mTBI F (1, 31) = 4.629*

Bonferroni multiple comparisons test t; DF
Control: mTBI day 1 versus PNE: mTBI day 1 3.444 62.00*
PNE: sham day 1 versus PNE: mTBI day 1 4.085 62.00**
PNE: mTBI day 1 versus PNE: mTBI day 14 3.492 31.00*

PNE, perinatally nicotine exposed; mTBI, mild traumatic brain injury. *  p < 0.05;  
** p < 0.01; *** p < 0.001; **** p < 0.0001.

Table 1. Summary of 3-way ANOVA and 
Bonferroni multiple comparison data for 
Y-maze, object-based attention test, and 
tail suspension test
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more, the PNE mouse model shows working memory 
deficits, a condition comorbid with ADHD [47–49]. The 
behavioral changes and the frontal cortical hypodopami-
nergic state in the PNE mice are alleviated by a single ad-
ministration of the classic stimulant drug MPH [28, 30], 
consistent with therapeutic effects of MPH in ADHD. 
Thus, the PNE mouse model is an experimental model of 
ADHD with significant face and predictive validity. The 
PNE mouse model also has construct validity for ADHD 
because cigarette smoking during pregnancy significant-
ly increases ADHD risk for the offspring [50, 51]. Thus, 
among the experimental animal models of ADHD re-
ported thus far [52–54], the PNE mouse model is the only 
one with demonstrated construct, face, and predictive va-
lidity as an ADHD animal model [28]. We used only male 
mice in the present study because in our PNE model, only 
the male mice show attention and working memory defi-
cit and motor impulsivity [28, 29]. Additionally, we used 
a closed-head mTBI paradigm or sham procedure repeat-
ed daily for 5 consecutive days to mimic repetitive con-
cussive injuries suffered due to participation in sports [35, 
38–41, 55].

Consistent with previously reported data [29, 30], PNE 
impaired spatial working memory. These deficits were 
not exacerbated by repetitive mTBI. Similarly, mTBI did 
not cause deficits in recognition memory. In contrast, 
previous work using controlled cortical impact [32] and 
the closed-head weight drop method [36] to induce brain 
injury both reported impairments in recognition memo-
ry as measured by the novel object recognition test. These 
results suggest that the approach used here, while repeti-
tive, is less severe than the previously reported approach-
es and represents a truly mild impact of the type that has 
been shown to be underreported clinically [56]. However, 
whether the repetitive mTBI model used here can pro-
duce deficits in recognition memory or spatial working 
memory at survival periods of 2–6 months that were used 
in the studies mentioned above, and well beyond the 
2-week survival period used here, remains to be seen.

Consistent with previous work [29, 57], this study 
found that PNE induced significant impairments in ob-
ject-based attention. While mTBI did not exacerbate the 
attention deficits in the PNE mice, the repetitive injury 
did result in a transient impairment of attention in the 
non-PNE control mice. Of particular note is the finding 
that mTBI transiently impaired attention such that it was 
indistinguishable from PNE-induced inattention, sug-
gesting that even mild injury that does not impair work-
ing memory may be sufficient to induce transient atten-
tion deficit.

A major finding from this study is that repeated mTBI 
produces transient depression-like behavior in the PNE 
mouse model. Not only did PNE not induce immobility 
in the tail suspension test, the repetitive mTBI in the non-
PNE mice was subthreshold with respect to this depres-
sion-like behavior. The behavior emerged only as a con-
sequence of repetitive mTBI in the PNE mice. Thus, it 
appears that depression-like behavior in the present study 
may be the result of synergistic interactions between PNE 
and mTBI.

Clinical studies show an inconsistent association be-
tween concussion and depression. Some studies report a 
nearly 75% comorbidity between depression and concus-
sion [58], whereas others do not report an association 
[59]. ADHD and depression also do not show an associa-
tion. We reported that mood disorders are not more prev-
alent in populations with ADHD than in the general pop-
ulation [60]. Therefore, whether treatment-naïve ADHD 
subjects are at an increased risk for depression, even if 
only transiently, following repeated concussions remains 
to be determined.

Our findings should be viewed within the context of 
the following limitations. The mice were anesthetized 
with isoflurane during the mTBI procedure. We recog-
nize that anesthesia may affect behavioral outcomes [35, 
40, 55]. Although we included a sham control group to 
address this possibility, using unanesthetized mice could 
address this issue directly. We used only male mice be-
cause only males show ADHD-like behaviors in the PNE 
mouse model. However, we cannot rule out the effect of 
sex on behavioral outcomes following repeated mTBI in 
the PNE or control groups. Although the PNE mouse 
model carries significant construct, face, and predictive 
validity for ADHD, it would be useful to examine if our 
findings can be replicated in other preclinical models of 
ADHD [52, 61, 62]. We found that the attention and 
working memory deficits present in the PNE mice prior 
to mTBI were not exacerbated by the repeated mTBI. It is 
possible that the effects of PNE on these behaviors led to 
a “ceiling” effect such that further decrease was not pos-
sible. Alternatively, increasing the “severity” of the re-
peated mTBI may exacerbate these deficits. Another pos-
sibility is that the behavioral assays used here (Y-maze 
and object-based attention test) may not be “sensitive” 
enough to detect the changes. Future studies could ad-
dress these possibilities.

In conclusion, the data presented here suggest that re-
peated bouts of mTBI may increase the risk of attention 
deficit and that untreated ADHD may be a risk factor for 
transient mTBI-induced depression-like behavior. 
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Whether stimulants may be effective treatments for de-
pression that results from the synergy between mTBI and 
ADHD remains an open question [63]; it is not known 
whether individuals who are being treated for ADHD car-
ry the same risk for mTBI-induced depression as those 
that are not receiving the treatment. Together, these data 
call for a re-examination of the current recommendation 
that participation in contact sports is beneficial for the 
management of ADHD and support the recommendation 
that depression screening should be a routine part of post-
concussion management for all individuals with mTBI 
[64] and particularly those with a diagnosis of ADHD.
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