Identification of Broadly Neutralizing Antibodies From SHIV Infected Chinese Macaques

¹National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China, ²Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China, ³Comparative Medicine Center, Peking Union Medical College, Beijing, China, ⁴Department of Medicine, Durham, North Carolina, USA, ⁵Department of Microbiology, Boston University, Boston, Massachusetts, USA, ⁶Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China

BACKGROUND

Broadly neutralizing antibodies (bnAbs) have been obtained from HIV-1-infected individuals after 2-4 years of infection. However, bnAbs with similar breadth and potency have not been isolated from SHIV-infected rhesus macaques. Understanding how bnAbs develop in SHIV-infected nonhuman primates (NHPs) will have important implications in use of rhesus macaques to study efficacy of HIV-1 vaccines.

METHODS

Single memory B cells were sorted with a pair of HIV-1 Env V2 differentiating baits from an SHIV_{1157ipd3N4}-infected rhesus macaque with broad neutralization activity in plasma after 6 years of infection. Paired variable heavy and light chains were amplified from the single memory B cells. Neutralization activity was determined using recombinant antibodies against autologous and heterologous tier 1 and tier 2 viruses on TZM-bl cells.

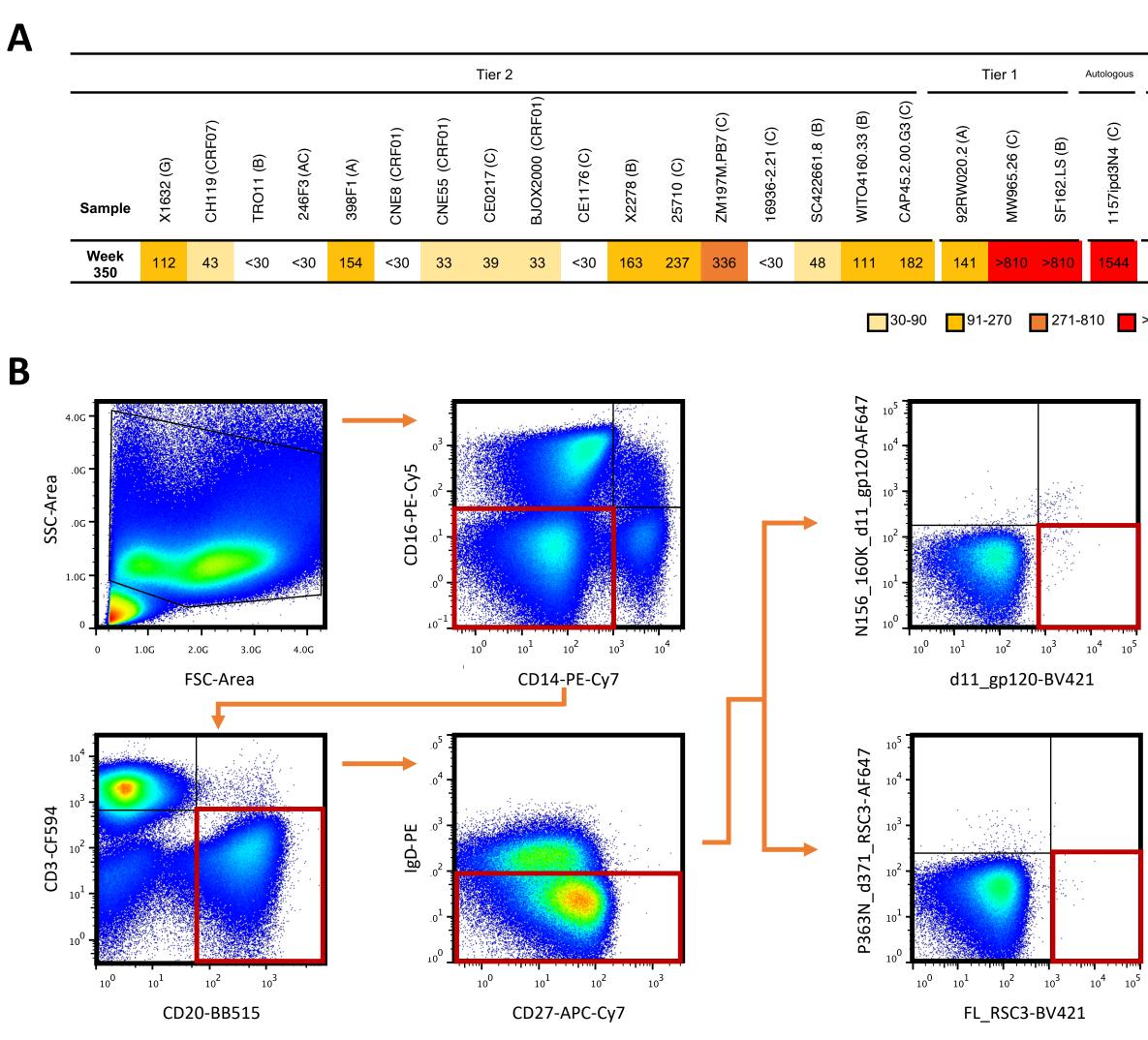


Figure 1. Isolation of antigen-specific mAbs. Epitope-specific memory B cells were sorted with a pair of differentiating baits with V1V2 bnAb specificity from PBMC collected at week 350 from G1015R, in which the broadly neutralizing activity was elicited.

Nan Gao¹, Yanxin Gai¹, Lina Meng¹, Chu Wang¹, Tiejun Gu¹, Wei Wang^{2,3}, Xiaojun Li⁴, Thomas B Kepler⁵, Chuan Qin^{2,3}, Xianghui Yu^{1,6}, Feng Gao^{1,4}

								Tier 2										Tier 1			Autologous	MLV
mAb ID	X1632 (G)	CH119 (CRF07)	TRO11 (B)	246F3 (AC)	398F1 (A)	CNE8 (CRF01)	CNE55 (CRF01)	CE0217 (C)	BJOX2000 (CRF01)	CE1176 (C)	X2278 (B)	25710 (C)	ZM197M.PB7 (C)	16936-2.21 (C)	SC422661.8 (B)	WITO4160.33 (B)	CAP45.2.00.G3 (C)	92RW020.2 (A)	MW965.26 (C)	SF162.LS (B)	1157ipd3N4 (C)	
J007	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	1.25	>50	0.98	>50
J013	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	8.16	>50
J024	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>20	>50	>50	>20	0.4	0.64	0.62	>50
J029	>50	>50	43.48	>50	>50	>50	29.41	4.44	>50	>50	1.25	0.81	>50	>50	4.73	0.28	0.14	>50	0.102	>50	0.077	>50
J031	>50	>50	37.03	>50	>50	>50	47.61	>50	>50	>50	0.78	15.42	>50	>50	9.71	6.67	2.99	>50	0.055	>50	0.155	>50
J032	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	27	>50	>50	>50	>50	>50	>50	0.005	0.172	0.96	>50
J033	>50	18.05	20.59	21.43	38.46	>50	15.00	5.14	14.85	>50	1.78	1.56	>50	>50	20.83	0.19	0.23	>50	0.307	>50	0.031	>50
J037	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	0.195	0.731	0.39	>50
J038	41.67	29.90	13.80	25.42	29.41	>50	20.83	5.54	26.32	>50	1.28	0.87	>50	>50	37.50	0.76	0.48	>50	0.11	>50	0.023	>50
J039	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	0.213	>50	4.97	>50
J040	>50	>50	>50	>50	>50	>50	48.29	4.35	>50	>50	2.27	1.72	>50	>50	>50	0.61	0.25	>50	0.043	>50	0.24	>50
J044	>50	>50	>50	>50	>50	>50	44.12	>50	>50	>50	3.75	9.47	>50	>50	>50	27.78	>50	>50	0.96	>50	<0.06	>50
															50-10 u	ıg/ml	10-2	ug/ml	2-0	.2 ug/m	I – <0	.2ug/ml

Neutralization activity of 12 mAbs isolated from G1015R were determined against 17 tier 2 viruses, 3 tier 1 viruses and 2 autologous viruses.

Table 2. Gene family analysis of rhesus monoclonal antibodies

			Heavy chain	Light chain					
mAb	IGHV	IGHJ	IGHD	CDR3 (aa)	SHM (%)	IGKV/LV	IGKJ/LJ	CDR3 (aa)	SHM (%)
J024	4-2*01 F	5-1*01 F	2-1*01 F	18	11.31	K1S15*01 F	K1*01 F	9	13.26
J029	4-2*01 F	4*01 F	3-1*01 ORF	18	16.22	K1-20*01 F	K4*01 F	9	19.57
J031	4-2*01 F	4*01 F	3-1*01 ORF	18	20.48	K1-20*01 F	K4*01 F	9	16.3
J033	4-2*01 F	4*01 F	3-1*01 ORF	18	20.6	K1-20*01 F	K4*01 F	9	19.25
J038	4-2*01 F	4*01 F	3-1*01 ORF	18	21.35	K1-20*01 F	K4*01 F	9	17.7
J040	4-2*01 F	4*01 F	3-1*01 ORF	18	21.62	K1-20*01 F	K4*01 F	9	16.77
J044	4-2*01 F	4*01 F	3-1*01 ORF	18	11.02	K1-20*01 F	K4*01 F	9	12.73
J039	4-2*01 F	4*01 F	3-3*01 F	18	9.67	K3S1*01 F	K1*01 F	10	9.32
J007	3-21*01 F	5-2*01 F	3-3*01 F	22	13.99	L8-1*01 F	L6*01 F	10	1.9
J013	3-7*01 F	5-1*01 F	2-4*01 F	19	5.76	K3S11*01 F	K2*01 F	9	8.86
J032	3-11*01 F	5-1*01 F	1-1*01 F	22	9.01	K3-1*01 F	K2*01 F	9	4.14
J037	3-7*01 F	5-1*01 F	1-8*01 F	22	16.47	K1-20*01 F	K2*01 F	9	4.76

Table 1. Neutralization activity of mAbs isolated from G1015R

SHIV_{1157ipd3'} Stoc}

214

350

Figure 2. Identification of neutralization escape mutations in V2 **region in G1015R**. Amino acid sequences of V2 region from the viral stock and weeks 27, 214 and 350 post infection were compared to the SHIV_{1157ipd3N4} reference sequence.

	J	029	J	J031		J033		038	J	040	J044	
Virus	IC ₅₀	Fold change										
wt 1157	0.08	1	0.16	1	0.09	1	0.05	1	0.15	1	0.12	1
I165L	0.26	3.38	2.81	18.13	0.21	2.5	0.12	2.6	0.38	2.53	1.29	10.8
K171R	0.34	4.39	0.89	5.74	0.35	4.1	0.27	5.9	0.99	6.6	0.23	1.9
V172A	0.18	2.36	1.02	6.58	0.15	1.8	0.11	2.5	0.29	1.93	0.17	1.43
I192T	0.06	0.77	0.31	1.97	0.07	0.87	0.05	1	0.08	0.53	0.09	0.76
Trimut	0.96	12.47	>10	>65	0.67	7.9	1.44	31.3	1.81	12.07	0.82	6.88

Neutralization sensitivity of wild type SHIV_{1157ipd3N4} and its V2 mutants was determined by the J029-lineage antibodies.

CONCLUSIONS

- All nAbs are from the same lineage.
- This lineage Abs target V2 region of HIV-1 Env and select escape mutants in vivo.
- BnAbs with similar neutralization potency and breadth similar to those in humans can be elicited in rhesus macaques after long term SHIV-infection.

d3N4	•••	• • • •	• • • • •	180 •••• Fyrlditi	•• ••	•••	•••	No. of seq	QQ
ck								10	100
27								15 1	94 6
14		-LR- -LR-	RA RT				Т Т Т	13 7 1 1 1	57 31 4 4 4
50		-L -L	RA RA RA		EG G	 	T T T	4 3 2	38 25 19 12 6

Table 3. Neutralization susceptibility of autologous escape mutants

J038 and J033 isolated from SHIV-infected Chinese rhesus macaques can neutralize 70% of tier 2 viruses.